Merlin 128

The Complete Macro Assembler System
For The Commodore 128

By Glen Bredon







Merlin 128 TM
Instruction Manual

Written by
Glen Bredon

Produced by:
Roger Wagner Publishing, Inc.

1050 Pioneer Way. Suite
El Cajon, CA 92020
Customer Service & Technical Support:
619/442-0522

ISBN 0-927796-23-6
5C587



Customer Licensing Agreement

The Roger Wagner Publishing, Inc. software product that goa just
received from Roger Wagner Publishing, Inc., or onesadiitthorized dealers,
is provided to you subject to the Terms and ConditionkeBoftware
Customer Licensing Agreement. Should you decide thatgounot accept
these Terms and Conditions, then you must return gramguct with all
documentation and this License marked "REFUSED" withirBthday
examination period following the receipt of the product.

1. License. Roger Wagner Publishing, Inc. hereby grantsigon your receipt
of this product, a nonexclusive license to use the eedlBoger Wagner
Publishing, Inc. product subject to the terms and reisingtset forth in this
License Agreement.

2. Copyright. This software product, and its documentatiormgpgraghted by
Roger Wagner Publishing, Inc. You may not copy or othervepeoduce the
product or any part of it except as expressly permittedisnLicense.

3. Restrictions on Use and Transfer. The original andbankup copies of this
product are intended for your personal use in connectitmassingle
computer. You may not distribute copies of, or any paurthis product
without the express written permission of Roger Waghdalishing, Inc.

Limitations of Warranties and Liability

Roger Wagner Publishing, Inc. and the program author sdnadl ho liability
or responsibility to purchaser or any other person oryanith respect to
liability, loss or damage caused or alleged to be causeattidios indirectly by
this software, including, but not limited to any interruptaf service, loss of
business or anticipatory profits or consequential dameasgedting from the
use or operation of this software. Some states do not gi@wxclusion or
limitation of implied warranties or liability for indental or consequential
damages, so the above limitation or exclusion may noyapplou.



Copyrights

The Merlin 128 documentation and software are copyrighted © 198®0gr
Wagner Publishing, Inc. This documentation and/or softwarany part
thereof, may not be reproduced in any form or by any mebatsranic or
mechanical, including photocopying, recording, storage imfnmation
retrieval system, or otherwise, without the prior tentpermission of the
publisher.

We have tried our best to give you a quality product atrgfice, and made
the software copyable for your personal convenience. ékeasmmend our
product to your friends, but respect our wishes to not makeségr others.
Thanks!

Merlin 128 is a trademark of Roger Wagner Publishing, Inc.

About the Manual

This manual was formatted using MacAuthor from Icon Tetdugy Ltd, 9
Jarrom Street, Leicester LE2 7DH, England, and Applesgl\riter printer.

OUR GUARANTEE

This product carries the unconditional guarantee offaatisn or your money
back. Any product may be returned to place of purchase fopleterefund or
replacement within thirty (30) days of purchase if acgamed by the sales
receipt or other proof of purchase.



ABOUT THE AUTHOR

Glen Bredon is a professor at Rutgers University in Nergey where he has taught
mathematics for over fifteen years He purchased lasdomputer in 1979 and began
exploring its internal operations because "l wantedhtmnv more than my students.” The
result of this study was the best selling Merlin MaAssembler and other programming
aids. A native Californian and concerned environmentdlilgn spends his summers away
from mathematics and computing, preferring the solitudbeSierra Nevada mountains
where he has helped establish wilderness reserves.



MERLIN 128
Table of Contents

INTRODUCTION

System Requirements

Suggested Reading  -----------=m--mmommeeme-

BEGINNER'S GUIDE TO USING MERLIN 128

Steps From the Very Beginning

Editing a Source Listing

Assembly
Saving and Running Programs

Making Back-up Copies of Merlin 128

MAIN MENU
Main Menu  ----mmmmmmem e

THE EDITOR

About the Editor Documentation

Immediate Mode

Add/Insert Commands = ----------emmmmmmeme-
Editing an Existing Line  ---------==-=m-=me-——-
Full Screen Editor Commands ~ ---------

Control Key Commands

Commodore Key Commands  ---------------
Editor Command Summary  ---------------
Altkeys and Keydefs =~ ------—-mmmmmmmmmmeee
If you make a mistake = ----------mmmmememee-
Find and Change Commands  --------------

More Immediate Mode Edit Commands

Other Immediate Mode Commands

Assembling a File

THE ASSEMBLER
The Assembler  -----------mommmmmmm e
About the Assembler Documentation ---

Preliminary Definitions

Assembler Syntax Conventions =~ ---------
Source Code Format =~ -------=--=-=-mnmmo-
Number Format = -------------=-m-mmmmmmmee-
Expressions Allowed by the Assembler

Immediate Data Syntax

6502 Addressing Modes =~ ---------------

Special Forced Non-Zero Page Addressing ~ -----------———-----------

Assembler Pseudo Opcode Descriptions

10
11

13

17
18
20
20
21
22
25
32
33
33
35
35
39
45

46
47
48
49
49
50
51
53
54
54
55




Formatting PSeudo OpS  =-=--=-====mmmmmm e o e 68

String Data Pseudo OpS  —-----mmmmmmm s oo e e e 72
Data and Storage Allocation Pseudo Ops =~ ----------————mmmmmmmm 75
Miscellaneous Pseudo OpS  —------mmmmmmmmmm oo 79
Conditional Pseudo OpS  ----===mm == mm e e e e 84
Macro Pseudo OpPS  —--m-mmmmmm e s oo oo e s 87
Variables —  -----ommm 87
Local Labels ---------m-mmmmmm e 88
MACROS
MaCIOS  mmmmmmmm oo 90
Special Variables —  ------mmmmm e e 93
Macro Libraries and the USE Pseudo Op = -----------———-—-mmmmmmmmmm- 97
THE LINKER
The LinKer  --mmmmmm oo o e e e e e 98
Pseudo Opcode for Re-locatable Code Files B 100
TECHNICAL INFORMATION
Technical Information  —-=--=m s m e e 105
General Information  -----==-mm s 105
Symbol Table - 105
Configuration  ==mmmm e 106
Contents of PARMS file = ----mmmmmmm e 107
Merlin 128 Memory Map — -----==-=mmmmm oo o oo 109
ERROR MESSAGES
Error Messages  ---------mm-mmmmm s e 110
SOURCEROR
INtroduction  —-mmm o 114
USiNg SOUICEror = =s-meeseeeemeeee e e e e e e e 114
Final Processing —-----—mmmmmm oo 117
Dealing with Finished Source ~  ------—-=--m-m e — e 118
Changing Sourceror’s Label Table = --------mmmmmmmm e 119
USING SOUICEror. XL --m-mmmmmmmm oo oo oo e 120
UTILITIES
FORMATTER  -mmm e oo e e 121
XREF oo e o e 121
XREFA oo s 124
PRINTFILER  -mmmm e oo e oo e e e 124
Changing Printfiler's Options = ------=-=-mmmmm oo 125
ALTKEYS oo e e e e e e e 126
KEYDEFS oo 127
Sample Programs & Files ~ ---—---m-mmmemmm e 128
DEMO  cmmm e e s e e e e e 128

070 =) 2 128




2 = 128

T — 128
SWISH o e 128
3, S S SRS ———— 129
o — 129
o ] S — 129
o I =5 S SRS ———— 129
] = S —— 129
€] o I ] ] S ————— 129
3 {1 ] (R —————— 130
LI ] Y S U ——— 130
00 [ ——— 130
2y XS] (O =7 5] = S ————— 130
] = I 0 S —— 130
GLOSSARY
GloSSary  mmmmm s 131
INDEX

INdEX oo 135




Merlin 128 User's Manual Preface

MERLIN 128

Merlin 128 is an extremely powerful, comprehensive Macseeibler system for the
Commodore 128 computer. It consists of four main moduldshamerous auxiliary and
utility programs which comprise one of the most compdstgembler systems available for
any personal computer. Merlin's four main modules are:

- FILE MANAGEMENT system, for disk I/Qfile management, disk operations, etc.

- EDITOR system, for writing and editing programs witbrd-processor-like power.

- ASSEMBLER system, with such advanced features asddaMacro libraries,
conditional assembly, linked files, etc.

- LINKER system, for generating relocatable code modlilesry routines, run-time
packages, etc.

But Merlin 128 is more than just the sum of these fouispalere are some of the other
features offered by Merlin 128:

- Merlin 128 recognizes over 38eudo Opcodes for extreme programming flexibility,

- Merlin 128 has over 40 editing commands for ultimate egipiower equaled only by word
processors,

- Merlin 128 comes with a powerful symbolic disassemtaegenerate Merlin source code
from raw binary programs,

- Merlin 128 comes with many sample programs, librariesodimer aids to get you going
with assembly language fast,

- Merlin 128 is UNLOCKED and COPYABLE for your benefit.




Merlin 128 User’'s Manual Introduction

INTRODUCTION

Congratulations on your purchase of Merlin 128, one of thst powerful, yet easy to use
assemblers for the Commodore 128 computer. Merlin 128soffgually every feature and
function that a programmer needs, thus making it unlitely you'll outgrow it. At the same
time, Merlin 128's easy built-in editor and fast asdesbnake it a pleasure to use whether
you're writing a few lines of code or 30,000!

To run Merlin 128, you'll need the following:

* COMMODORE 128
* 1571 Disk drive or equivalent

If you are currently using a printer, Merlin 128 will furgatijust fine with it, producing
formatted listings with page breaks and titles.

If you're familiar with assembly language programming alyegou will find Merlin 128
easy to adapt to. It follows the standards of 6502 progmagjyrand its assembler-directed
commands, or pseudo-ops are a super-set of just aboytathier assembler. That is,
assembler directives like HEX, ASC, DS etc., that've used in other assemblers are still
there in Merlin 128, and better still, you'll find a newrgdement of functions to make
programming easier. These include assembling directly fowrdisk files, multiple data
formats for numbers and strings, a complete sessdrabler utilities such as cross-
referencing and a source code generator (Sourceror), wegabilities and more.

If you're new to assembly language programming, Merlin 12&igdiiest assembler there
is. However, the Merlin 128 manual does not make any pttenteach the techniques of
assembly language programming itself. Those techniques\agedan various tutorial
books available from a number of publishers. Because awetyas different goals and
objectives, you should seek out those books which beshmate current needs and
experience.

Two of the better books that we recommend include:

ASSEMBLY LANGUAGE FOR KIDS - William B. Sanders. Miglit, 17857 Aguacate
Way, San Diego, CA 92127

COMMODORE 64/128 ASSEMBLY LANGUAGE PROGRAMMING - Mark
Andrews. Howard W. Sams & Co., Inc., 4300 West 62nd Stiresignapolis, IN
46268

Both of these books offer Merlin program listings.

Page 1



Merlin 128 User's Manual Beginner's Guide

BEGINNER'S GUIDE TO USING MERLIN 128

The purpose of this section is not to provide instructioassembly language programming.
Rather, it will show you the loading, editing, and runnih@ short assembly language
program to give you an idea of how Merlin 128 works.

Many of the Merlin 128 commands and functions are verylainm operation. This section
does not attempt to present demonstrations of each and ewvenyand option. The
objective is to present examples of the more comnpenations, sufficient to get you
started writing your own programs using Merlin 128. You shoatdempect to immediately
use all of the various commands that Me4in 128 supportaiinfyst program. The best
approach is to use the Merlin 128 manual in an encyclopkdishion, reading just those
sections that provide some utility to a current programgrésk. We suggest that you lightly
skim through the manual once, to become aware of gignerhat the software has to offer,
and then return later to specific sections as needed.

Now, let's try your first program with Merlin 128. Justldo¥ these steps:

1. Boot the Merlin 128 disk. A title screen appears, aftechvthe screen changes to
the MAIN MENU. The main menu is used for loading and sgviles, disk
operations, and of course, entering the MERLIN Editor Assembler itself.

2. When the '%' prompt appears at the bottom of the mamu, type ‘E'. This instantly
places the system in EDITOR control mode. The scecéssars and the prompt
changes to a colon (":").

3. The two most often used commands in the immediatie mbthe Editor are 'A’ (for
Add lines) and 'I' for inserting lines between existingdioéyour source code.

Since we are entering an entirely new program, typat'fie "' prompt and press
RETURN (A = ADD). A '1' appears at the top right coroéthe screen. This
indicates the current line number. The cursor is otetfhside of the screen, and will
appear as an inverse 'l' (the meaning of the cursor appeavéinoe discussed a
little later in this manual).

4. On line 1, enter an asterisk (*). An asterisk asitesedharacter in any line is similar
to a REM statement in BASIC it tells the assemUiat this is a remark line and
anything after the asterisk is to be ignored. To confinis) type the title ‘Merlin 128
Demo' after the asterisk and press the RETURN key.

5. After Return, the cursor once again drops down ongdif# appears at the top right
to indicate the new line number. Press the space lbarand type 'ORG’, space
again, type '$8000', and press RETURN.

Page 2



Merlin 128 User’s Manual Beginner's Guide

*

Theabove step instructs the assembler to create the fotiggvogram so that it can run
at memory location $8000. Merlin 128 almost always assemgblasprogram in the
same place in memory, but the ORG (for Origin) is usddll Merlin 128 where you
want the program to eventually be run. This is so this] JSRs and other location
dependent code within your program is properly written wWithfinal location in mind.

You'll notice that when you press the space bar, M&Bthautomatically moves the
cursor to the next field on the line. You'll recall tirmassembly language programming,
the position of text on each line determines what kindfofmation it is. Labels for
routines and entry points are in the first position.li@& 2 you skipped this field by
pressing the space bar first, before entering any tegts&bond position is for the
command itself. The command can either be a 6510/8502 consuends LDA, RTS,
etc., or it can be a directive to Merlin 128 itself, ®oused during the assembly to write
a file to disk, create a label, call up a macro, or driMerlin 128's many assembler
commands.

Asterisk can also be used to just create a blank linéin® 3, enter another asterisk,
with no text following it, and press RETURN again.

On line 4, do not space once after the line number. B@UT', space, 'EQU’, space,
'$FFD2', space, ;' (semicolon), 'Output subroutine', \BEN.

This defines the label BSOUT to be equal to hex FFD2. Tlei®tia label is known as a
constant. Wherever BSOUT appears in an expressiaill iie replaced with $FFD2.
Why don't we just use '$SFFD2'? For one thing, 'BSOUT'sgee#o remember than
'$FFD2'. Also, if a later assembly required changimgldication of BSOUT, all that
needs changing is the 'EQU' statement, rather th#ameabther '$FFD2's throughout the
listing.

Semicolons are like asterisks, used to mark the beginniagerhark (comment).
Semicolons, however, are used to mark the start ofnmemt at the end of a line that
contains other text.

Line 5: Type 'BUFLEN', space 'EQU’, space '20', spaceéength of string to print’,
RETURN.

The program should now look like this:

Merlin 128 Demo

ORG  $8010
BSOUT EQU $FFD2 ;Output subroutine
BUFLEN EQU 20 ;Length of string to print

Page 3



Merlin 128 User's Manual Beginner's Guide

9. Enter thdollowing 5 lines:

GETIN EQU

KEY EQU

*

START LDX

LOOP LDA
JSR

$EFE4 ;Get input subroutine

$FFOF ;Keyboard scan routine

#0 Set Xto 0

STRING,X ;Get a character from STRING
BSOUT :Send it to the screen

Following the Opcode is the operand, in this case 'BSOWE .operand is the target information
of the Opcode. Where to JSR to, what value to load, etc.

10. Enter the following lines to complete the program:

INX
CPX
BNE
SCAN JSR
JSR
BEQ
CMP
BEQ
JIP
DONE RTS
STRING TXT

:Increment X
#BUFLEN ;Compare X to value in BUFLEN
LOOP ;if not equal, go back to LOOP
KEY ;Scan the keyboard
GETIN ;Any input?
SCAN ;If not, go back to SCAN
#$0D ;Was Return pressed?
DONE ;If sogo to DONE
SCAN ;If not, go back to SCAN
:All done

'Press Return to Exit'

11. The program has been completely entered, but thersisseill in ADD mode. To exit ADD,
just press the Commodore key (bottom left of keyboard}famthorizontal arrow key (top left of
keyboard) athe sametime. (A Commodore command key character is typed in a manndasimi

to control char

acters, and are indicated in this mamp&lC and CTRLC, respectively.) The "'

prompt reappears at the bottom of the screen, indicatibghthaystem has returned to the
immediate mode.

12. Prom the '’ prompt, type L to list the program. The egrghould now look like this:

*  Merlin 128 Demo

ORG $8000
*
BSOUT EQU $FED2 ; Output subroutine
BUFLEN EQU 20 ;Length of string to print
GET IN EQU $EFE4 ;Get input subroutine
KEY EQU $FFOF ;Keyboard scan routine
*
START LDX #0 :Set Xto 0
LOOP LDA STRING, X :;Get a character from STRING
BSOUT :Send it to the screen
INX :Increment X
CPX #BUFLEN ;Compare X to value in BUFLEN
BNE LOOP ;If not equal, go back to LOOP
SCAN JSR KEY ;Scan the keyboard
JSR GET IN ;Any input?

Page 4



Merlin 128 User's Manual Beginner's Guide

BEQ SCAN ;If not, go back to SCAN

CMP  #3$0D 'Was Return pressed?

BEQ DONE ;If so, go to DONE

JMP SCAN ;If not, go back to SCAN
DONE RTS ;All done

STRING TXT  'Press Return to Exit'

Note that throughout the entry of this program, eachflté>d@ has been moved to a specific
field. Here is a summary of the fields as used so far:

LABEL OPCODE OPERAND COMMENT

Field One is reserved for labels. BSOUT, START and D@Eexamples of labels.

Field Two is reserved for opcodes, such as the Merlin 128 psmpmbales (also called
directives) ORG and EQU, and the 6510/8502 opcodes JSR and RTS.

Field Three is for operands, such as $8000, $FFD2 and, iceides BSOUT.

Field Four contains comments (preceded by";")

It should be apparent from this exercise that it is no¢sgary to input extra spaces in the
source file for formatting purposes, even if these spsees to exist in a listing you may be
using.

In summary:

1) Do not space for a label. Space once after a lap#ltbere is no label, once for the
opcode.

2) Space once after the opcode for the operand. Spacafteicthe operand for the
comment. If there is no operand, type a space andiademfor a comment.

EDITING A SOURCE LISTING

Assuming no errors have been made in the text enterted,s/ou could now assemble the
program entered with Merlin 128. Before doing that, howdeé&s look at the editing
abilities of Merlin 128.

Editing is the process of making alterations to text ybatve already entered, and this
ability is one of MERLIN 128's strong points. In a ser@seassembler is just a word
processor for the text that makes up a program. Irigfmf then, you can judge an
assembler in part by how good its editing features are.

Merlin has a powerful, built-in full screen editoowerful in the range of operations
possible but, after a little practice, remarkably easys@®

Page 5



Merlin 128 User's Manual Beginner's Guide

There are two phases to editing text with Merlin 128. Triseif telling the Editor which
lines you wish to add, delete or edit. Sometimes a spdici number is not needed, as
when you typed 'A' to start adding lines to your listing.

Other times, you will wish to edit a line that hasatty been entered, and a line number
may be required. In addition, once you are editing a Bpdioe, new commands become
available to you to make specific changes to a line of tex

Note that in the remainder of this manual, special cherawill be abbreviated as follows:
c== Commodore key,— = Horizontal arrow, Esc = Escape key, Alt = Alteenkey, and
CTRL-C = Control-C.

Inserting and deleting lines in the source code are hothlesoperations. The following
example will INSERT three new lines between the egslines 5 and 6.

1.  After the "' prompt, type 'l' for INSERT), the nben '21', and press RETURN. All
inserted lines will precede (numerically) the line nungpecified in the command.

2. Type an asterisk, and press RETURN. Note that the RYS&Rode has not been
exited.

3. Type another asterisk, and press RETURN again.
4. Press space once, and type TYA'"
The three new lines (21, 22, and 23) have been inserthe@ssubsequent original

source lines (now lines 24 and 2&8ve been renumbered. The last few lines of the
program should now look like this:

JMP SCAN ;If notgo back to SCAN
TYA
DONE RTS ;All done

STRING TXT 'Press Return to Exit'

5. Presg= - to exit the full screen editor. The system revertgrimediate Mode ("'
prompt).

Using DELETE is equally easy.

1. In Immediate Mode of the editor, type 'D21', and prdSEUWRN. Nothing new appears
on the screen.

2. Type L to list the source code. The source listingnes line shorter. You've just deleted
the TYA' line, and the subsequent lines have been renudbere

Page 6



Merlin 128 User's Manual Beginner's Guide

It is possible to delete a range of lines in one step.
1. Incontrol mode, input 'D21,22" and press RETURN.
2. Type L to list the source.

Lines 21 and 22 from the example, which contained thetetasterisks, have been
deleted, and the subsequent lines renumbered. The listingsippeaame as when you first
entered the listing.

This automatic renumbering feature makes it IMPERATIVé& thhen you are deleting
several different groups of lines at once, you must rdmeo begin with the group with
highest numbers and work back to the lowest.

For example, if you had a long listing, and wanted to Bdiees 5-7, 15-2and 66-72, you
would type in:

D66, 72
D15,23
D5, 7

NOT:

D5, 7
D15,23
D66, 72

This is because after the first Delete of lines 5 thrayghhat used to be lines 15 through
23 are now at 12 through 20! Keep this in mind and you'll avoid prable

While Adding, Inserting, or Editing an existing line, you @awany options within the line,
all of which are accessed by using Control characterde@nstrate, using the listing
you've entered:

1. Atthe "' prompt, enter 'E' (the EDIT command) anche@ humber (use '21' for this
demonstration), and press RETURN. The cursor move®tbetinning of the specified
line and is over the 'D' in 'DONE".

DONE RTS

2. Type CTRL-D. The character under the cursor disappegrs. CTRL-D three more
times until 'DONE' has been deleted, and the cursor isqgruil to the left of the
opcode (RTS).

3. Presx= ,then L to list the program. In line 21 of the source cods, thhe opcode
remains.

4. Atthe "' prompt, enter 'E21' and press RETURN.

Page 7



Merlin 128 User's Manual

Beginner's Guide

5. Don't move the cursor with the space bar or arrow. Keyse the word ‘DONE’, then

6. Press L to list the program. Line 21 has been restored.

The other sub-commands (CTRL-characters) used under tHedéBvmand function
similarly. Read the definitions in the Editor Sectamd practice a few operations.

ASSEMBLY

The next step in using Merlin 128 is to assemble the sourcertodabject code.

At the "' prompt, type the command ASM and press RETURNyour screen is the

following:
ASSEMBLING
8000: A2 00
8002: BD 1D
8005: 20 D2
8008: ES8
8009: EI 14
800B: DO F5
800D: 20 9F
8010: 20 E4
8013: FO F8
8015: C9 0D
8017: FO 03
8019: 4C 0D
801C: 60
801D: 70 52
8020: 53 53
8028: 4E 20
8030: 54

O~NO U WN B

9
80 10
FF 11

12

13

14
FF 15
FF 16

17

18

19
80 20

21
45 22
20 72
o4 AF

* Merlin 128 Demo
ORG

*

BSOUT EQU

BUFLEN EQU

GETIN EQU

KEY EQU
*
START  LDX
LOOP LDA
JSR
INX
CPX
BNE
SCAN JSR
JSR
BEQ
CMP
BEQ
IJMP
DONE RTS
STRING  TXT
45 54 55 52
20 65 58 49

$8000

$FFD2 ;Output subroutine

20 ;Length of string to print
$FFE4 ;Get input subroutine
$SEFIF ;Keyboard scan routine
#0 ;Set Xto 0

STRING,X :Get a character frorRBNG
BSOUT :Send it to the screen

;Increment X
BUFLEN ;Compare X to value in BUFLEN
LOOP :If not equal, go back to LOOP
KEY ;Scan the keyboard
GETIN ;Any input?
SCAN ;If nao back to SCAN
#$0D :Was Return pressed?
DONE ;If so, go to DONE
SCAN If ngp back to SCAN
;All done

'Press Return to Exit'

--End Merlin 128 assembly, 49 bytes, Errors: 0

Page 8



Merlin 128 User's Manual Beginner's Guide

Symbol Table - alphabetical order:

BSOUT =$FFD2 BUFLEN =$14 DONE =$801C GETIN =$FFE4
KEY =$FFIF LOOP =$8002 SCAN =$800D ?START=$8000
STRING =$801D

Symbol table - numerical order:

BUFLEN =$14 ? START =$8000 LOOP =$8002 SCAN --$800D
DONE =$801C STRING =$801D KEY  =$FFOF BSOUT =$FFD2
GETIN =$FFE4

If instead of completing the above listing, the scregplalys an error message, note the line
number referenced in the message, and press RETURNhentitEND ASSEMBLY..."
message appears. Then refer back to the first sechierewhe program was first entered
and compare the listing with Step 12. Look especially fements in incorrect fields. Using
the editing functions you've learned, change any linesumn jsting which do not look like
those in the listing in step 12, then, from the "' prorypte ASM and press RETURN to re-
assemble.

If all went well, to the right of the column of limeaimbers down the middle of the screen is
the now familiar, formatted Source Code.

To the left of the line numbers, beginning on line 9,3e”@es of numeric and alphabetic
characters. This is the Object Code, which is the opcaaE®perands assembled to their
machine language hexadecimal equivalents.

For example, starting on line 9, the first group of abters (8000) is the program's starting
address in memory (see the definition of ORG in theeAwbler Section). After the '8000:" is
the number 'A2'. This is the one-byte hexadecimal codthé opcode LDX.

NOTE: the label 'START' is not assembled into objedecmeither are comments, remarks,
or pseudo-ops such as ORG. Such elements are only farrthentence and utility of the
programmer and the use of the assembler program.

On line 11, after the '8005:" is the number '20'. This i®tiebyte hexadecimal code for the
opcode JSR. The next two bytes (each pair of hexadedigitd is one byte) bear a curious
resemblance to the last group of characters on line 4;&#wok. In line 4 of the source
code we told the assembler that the label 'BSOUT' &&dwith address $FFD2. In line 11,
when the assembler encountered 'BSOUT' as the operanbstituted the specified
address. The sequence of the high and low-order bytesewersed, turning $FFD2 into D2
EF, a 6510/8502 microprocessor convention.

Page 9



Merlin 128 User's Manual Beginner's Guide

The rest of the information presented should explaegifitThe total errors encountered in
the source code was zero, and 49 bytes of object code @fduytes following the
addresses) was generated.

SAVING AND RUNNING PROGRAMS

The final step in using Merlin 128 is running the program. dlwsays a good idea to save
the source code and object code before testing any proghem, if the program bombs or
hangs up, you'll be able to go back to your listing withouingalost your work to that
point. To do this, you will have to return to the Maindeand use the SAVE SOURCE
command. You would then follow that with an OBJECT COBEVE. Note that OBJECT
CODE SAVE can only be done if there has been a sudctessembly.

Here are the actual steps to follow:

1. With the "' prompt, type 'Q and press RETURN. Theesystill quit the EDITOR
mode and revert to Main Menu. If the Merlin 128 systesk d§ still in the drive,
remove it and insert an initialized work disk.

After the '%' prompt, type 'S' (the Main Menu SAVE SQLIRFILE command).
The system is now waiting for a filename. Type 'demaid press RETURN.
After the program has been saved, the prompt returns.

2.  Type'C' (CATALOG) and look at the disk catalog. Therse code has been saved
as a file titled "demol .s". The suffix “.s” is a fil@beling convention which
indicates the subiject file is source code. This suffaut®matically appended to
the name by the SAVE SOURCE command.

3. Press RETURN to return to Main Menu and type '0', 8JECT CODE SAVE.
The object file should be saved under the same namasasarlier specified for
the source file, so press RETURN to accept 'demo leasiiect name. There is
no danger of overwriting the source file because tHexsw0" is appended to
object code file names. Type 'C' (CATALOG) to verifatihe object code has
been saved as a file titled "demo 1.0". Press RETURBMttor to the Main Menu.

When looking at the Main Menu, you'll also notice titegt address and length of
your source code text is displayed. If you have done assftd assembly, the
address and length of the assembled object code is altmydibplf the object
code information is NOT DISPLAYED, Merlin 128 will ncgtlyou save an object
file to disk. The object code save is disabled wheneverran has occurred during
an assembly, you have made a change to the source abdetamt re-assembled
it, or the source code is either too big to fit or notvedid in the space you have
specified for the assembly. See the sections on ORG,ad8 Memory Allocation
if this latter problem occurs.

Page 10



Merlin 128 User's Manual Beginner's Guide

Next type 'G' (GO) to run a program. At the prompt, t@eenol'. The demonstration
program puts the message 'Press Return to Exit' onrdensdt works!

Now you can return to the Main Menu by pressing RETURN.assembly language
programs that end in an RTS, and that are run using M&t8ts 'G' command in the
Main Menu will return to the Main Menu when done.)

MAKING BACK-UP COPIES OF MERLIN 128

The Merlin 128 diskette is unprotected and copies may be osaag any copy utility. The
Merlin 128 diskette has a copy program on it. The COPY apragnust be run from
BASIC. From the Main Menu, type 'B' to quit to BASICethtype RUN "COPY".

It is highly recommended that you uzdy the BACK-UP copy of Merlin 128 in your daily
work, and keep the original in a safe place.

PERSONALIZING MERLIN 128

Certain aspects of Merlin 128, such as the background, banderharacter colors, the
printer line width, default tab positions for the fieldghe source listing, etc. can be
customized by changing the file PARMS.S on the Merlin 18R, dind reassembling the
PARMS.O file. If you would like to change any of theseaddit of Merlin 128, see the
section on Configuration in the Technical Informatiortisecof this manual for details on
making the changes. For now, though, we recommend yuoe ‘eell enough alone until
you're more familiar with Merlin 128.

THE REST OF THIS MANUAL...

The preceding section was a simple look at how to eatsemble and then save a Merlin
128 program.

The remainder of this manual is an encyclopedic referehthe various commands that are
available within Merlin 128 to make writing an assembly langymggram easier.
Remember that the commands and directives availablewitérlin 128 are merely the
building blocks from which you can create your own progrdms.up to you to decide
when and where they are to be used.

The manual describes the following aspects of Merlin 128:

1) The Main Menu: This level of Merlin 128 is used for loading and saving fithsk
operations, and entering the Editor/Assembler.

Page 11



Merlin 128 User's Manual Beginner's Guide

2) The Editor: This section describes the functions available faatarg and editing a
source listing for an assembly language program.

3) The Assembler:This section covers assembler directives within Mer28. Remember
that these are not editing or direct user commandsathér, text commands included
within a source listing to tell the assembler to doettwng special while your program is
being assembled. This might include using a Macro definitwoiing a file to disk, or other
functions.

4) Supplemental SectionsThere are a number of additional sections in thisuaktimat
describe the use of Macros, the Relocating Linker, Erresddges, Sourceror and other
Utilities, and many other aspects of Merlin 128's operaiitvese can be consulted as
necessary.

Page 12



Merlin 128 User's Manual Main Menu

THE MAIN MENU

The Main Menu is used for file maintenance operationk asdoading or saving code or
cataloging the disk. The following sections summarizde&@mmmand available in this
mode.

C (CATALOG)

When you press "C'the CATALOG of the current diskette will be shown. TWain Menu
prompt (%) appears. This permits you to give another WMnu command such as ‘L’ to
LOAD SOURCE while the catalog is still on the screléyou do not want to give a
command, just press RETURN. Press the space bar totpaussalog process, and any
other key to resume. Press the Run/Stop key (or Contral-&h)ort the catalog.

L (LOAD SOURCE)

This is used to load a source file from disk. You wilbempted for the name of the file.
You should not append ".s" since Merlin 128 does this autorigtifayou have pressed
‘L’ by mistake, just press Run/Stop/Restore and the camdmall be cancelled without
effecting any file that may be in memory.

After a LOAD SOURCE (or APPEND SOURCE) command, yoeiautomatically placed
in the editor mode, just as if you had pressed 'E'. ®hece will automatically be loaded to
the correct address. Subsequent LOAD SOURCE or SAVE S@&HdeGimands will
display the last used filename. If a source file haekaly been loaded, the cursor will be
flashing under the first character of the filenameoli press RETURN, the current
filename will be used for the command. If you wish tada different filename, type the
flename and press RETURN.

S (SAVE SOURCE)

Use this to save a source file to disk. As in the loadnsand, you do not include the suffix
".s" and you can press Run/Stop/Restore to cancel thmaad. NOTE: the address and
length of the source file are shown on the MENU, aedi@r information only. You should
not use these for saving; the assembler remembersbiteen than you can and sends them
automatically. As in the LOAD SOURCE command above,léist loaded or saved
filename will be displayed and you may press RETURN ve flae same filename, or enter
another filename.

NOTE: when a SAVE or WRITE is done from the Main Meor when the SAV opcode is
used in the source code, an error will result if treedifeady exists on the

Page 13



Merlin 128 User's Manual Main Menu

diskette. This can be avoided by preceding the filenaitte'@:' or '@0:'. The new file is
saved before the old file is scratched, thus there neushbugh room on the diskette for the
new file.

This syntax may also be used for a LOAD but it hasffezteother than to make the '@:'a
part of the default filename.

A (APPEND FILE)

This loads in a specified source file and places iteaetid of the file currently in memory.
It operates in the same way as the LOAD SOURCE camdmand does not affect the
default file name. It does not save the appended file;aye free to do that if you wish.

N (NEW SOURCE)

This command, after confirming your intention, deletesctireent source file from memory.
This is handy when used prior to a READ command, sincelR&ways appends the file to
the existing source code, if any.

R (READ TEXT FILE)

This command reads text files into Merlin 128. They are ydveppended to the current
buffer. To clear the buffer and start fresh, use tB®MNSOURCE command. If no file is in
memory, the name given will become the default fileeaAppended reads will not do this.

When the read is complete, you are placed in the edfitbe file contains lines longer than
255characters, these will be divided into two or more limgshe READ command. The
file will be read only until it reaches HIMEM, and Wiroduce a memory error if it goes
beyond. Only the data read to that point will remain.

The READ TEXT FILE and WRITE TEXT FILE commands arsed to LOAD or
CREATE "PUT" files, or to access files from othereamblers or text editors.

W (WRITE TEXT FILE)
This writes a Merlin 128 file into a text file insteadaobinary file. The WRITE command

does not delete or scratch first. See the CAUTIONiegnSAVE command regarding the '@:'
syntax.

Page 14



Merlin 128 User's Manual Main Menu

D (DRIVE CHANGE)

When you press ‘D'the ‘New Drive # prompt will appear. Enter the desireanber. The
currently selected drive number is shown on the MainlM&Vhen Merlin 128 is first
booted, the selected drive will be the on used by the boot.

E (ENTER EDITOR/ASSEMBLER)

This command places you in the Editor/Assembler modgritttmatically sets the default
tabs for the editor to those appropriate for soures.filf you wish to use the editor to edit
an ordinary text file, you can type TABS from the eofowompt (:) in the Editor to zero all
tabs.

0 (SAVE OBJECT CODE)

This command is valid only after the successful asseniladysource file. In this case you
will see the address and length of the object code omé¢imel. As with the source address,
this is given for information only.

NOTE: the object address shown is that of the prograRG (@r $8000 by default) and not
that of the actual current location of the assembleie ¢avhich is ordinarily $AOOO in
bank 1).

When using this command, you are asked for a name for teetditg. A '.o0" suffix will be
automatically appended to this filename. Thus, you can saselghe same name as that of
the source file.

When this object code is saved to the disk, its addrekbewvihe correct one, the one shown
on the Main Menu. When later you LOAD it, the filelMaoad at that address, which can be
anything ($1C00,$8000, etc).

G (RUN PROGRAM)

This command will LOAD and EXECUTE the specified objelg. fit will not run a BASIC
program. The specified object file must have a '.dbsuf is not necessary to include the
suffix when entering the filename. Therefore, pres&Bi and entering 'filename' and
pressing RETURN will LOAD and EXECUTE the object fildled 'filename.o'.

The 'G' command will run a program anywhere in RAM @nters with the RAMHALF
configuration unless the program extends to $C000 or beyoerdorblgram will be in
conflict with Merlin 128 if the load address is between $1&00 $6FFF. In this case,
Merlin 128 will move itself into RAM 1 at $A000 and placemaadl interface routine at
$800 before loading your program. When your program does

Page 15



Merlin 128 User's Manual MainMenu

an RTS, Merlin 128 will move itself back. You can alsturn to Merlin 128 with a JMP
$800. While Merlin 128 is moved to $A000, pressing Reset will cavskbamt.
X (DISK COMMAND)
This sends the command to the "Error Channel. Exampleteoded use are:

X then V will do a disk verify.

X then S:FILE.O will scratch “FILE.O".

X then RINEWFILE.S = OLDFILE.S will rename OLDFILE.
NOTE: the.Sor.O, if any, must be entered here, and that quotes shoultkneted. Also,
to prevent unintentional initialization, the N (Newhwmand is not supported.
M (MONITOR)
This command uses the CBM monitor program. You can usd tile standard CBM
Monitor features. Press ‘X’ to return to the Merlin 12&iMMenu. This command should
not be confused with the MON command in the Merlin 128d£di
B (BASIC)
After confirming your intention to quit, this command exiterfih 128 and goes to
BASIC. Merlin 128 moves itself to $A000 in RAM 1. The defdrlinction Key
definitions are reinstated except for the F4 key, whidobees a Return to Merlin
128' (SYS 2048) command.
Pressing F4 to re-enter Merlin 128 is provided for safetjadt, the source file, if any, may
still be intact. It is possible, however, that a BESIirogram could overwrite the re-entry
routine at $800. Therefore, the F4 method of returning taldhm used with caution. The

recommended re-entry method is to press the Reset battehoot.

Note: When inside Merlin 128 pressing the Reset button izigislihe 1/0 devices and
returns to the Main Menu. It does not go to BASICedyoot.

Page 16



Merlin 128 User’'s Manual The Editor

THE EDITOR

Basically there are two modes in the Editor: the Iohiate Mode and the full screen Editing
Mode, which includes Adding or Inserting new lines of text

When you first go to the Editor from the Main Menu, yaill lae in the Immediate Mode,
which is indicated by the colon (":") prompt. No actuatiad is done at this level. Rather,
you can either type a command which will start up thiesttreen editor, or you may use a
number of specific Immediate Mode commands, which aeeg&neral utility nature, such
as to print a listing, assemble a file, convert nuntyees, etc.

When you type an editing command such as A (to Add), retm the Immediate Mode, the
color prompt will disappear and the screen displayahiinge to the full screen editor, but
more on that in a moment.

ABOUT THE EDITOR DOCUMENTATION

For each of the commands available in the Merlin 128Edie documentation consists of
three basic parts:

1) the name and syntax of the command,
2) examples of the use of each available syntax,
3) a description of the function of each command.

When the syntax for each command is given:
PARENTHESES () indicate a required value,

ANGLE BRACKETS <> indicate an optional value or cheter.
SQUARE BRACKETS [] are used to enclose comments abeutommand.

Page 17



Merlin 128 User's Manual The Editor

THE IMMEDIATE MODE

GENERAL GUIDELINES FOR THE IMMEDIATE MODE
For most of the Immediate Mode commands, only thelétser of the command is
required, the rest being optional. This manual will shibevrequired command characters in
UPPER case and the optional ones in lower case.
Line Numbers in Immediate Mode
With some commands, you must specify a line numbemgeraf line numbers, or a range
list. A line number is just a number. A range is a p&ime numbers separated by a comma.
A range list consists of several ranges separatecsiagha (/7).
Line Number examples:

10 LINE # [a single line number]

10,30 RANGE [the range of lines 10 to 30]

10,30/50,60 RANGE LIST [ranges 10 to 30 AND 50 to 60]
If a line number in a range exceeds the number of#tdihe in the source, the editor
automatically adjusts the specified line to the lastriamber. For example, if you wanted
to Delete all the lines past 100 in a source listing, D100,9994dvpwobably do it!
Delimited Strings (or d-strings)
Several commands allow specification of a string. Thegsmust be "delimited” by a non-
numeric character other than the slash or comma. &delimited string is called a d-string.
The usual delimiter is single or double quote marks §: or"

Delimited string examples:

'this is a delimited string'
"this is a delimited string" @this is another d-string@

Note that the slash"/" cannot be used as a delimitee $ins the character that delimits
range lists in the editor.

Page 18



Merlin 128 User's Manual The Editor

Wild Card Characters in Delimited Strings

For all of the commands that use delimited stringsrides), the*r” character acts as a
wild card character. Therefore, the d-string “Jon"€gsivalent to the d-string "Jones" as
well as "Jonas".

Upper and Lower Case Control

The shift and caps lock keys work as you would expect. whilmgaer entering a line of
text, there are also special upper/lower case comnaadlable, as will be described later.

Page 19



Merlin 128 User's Manual The Editor

ADD/INSERT COMMANDS

Following are the commands recognized by Merlin 128 inrtiraddiate Mode of the
Editor. The Immediate Mode is indicated by the colon gotof).

Add/Insert a Line

When you first start a listing, the Add command is usestdd entering lines. It can also be
used later to add lines to the end of the listing. Insersed to insert new lines in between
existing lines in the source listing.

Add
A [only option for this command]

The Add command places you in the Full Screen Editthreaénd of the existing source
listing (if any). Adding lines is much like entering addigdBASIC lines with auto line
numbering. To exit from ADD mode (actually to exit thelBdreen Editor), press= and

—.

You may enter aempty line by pressing RETURN. This is useful for visually blocking
off different parts of a listing.
Insert

Insert (line number)
| 20 [inserts lines "above" line 20]

This allows you to enter text just above the specifiegl IDtherwise, it functions the same
as the Add command.

EDITING AN EXISTING LINE IN A SOURCE LISTING...

Once a line already exists in your Source listing, yay mant to edit a particular line or

range of lines. This is done using the cursor control anth@@dommands of the Full
Screen Editor, as is described shortly.

Page 20



Merlin 128 User's Manual The Editor

FULL SCREEN EDITOR COMMANDS

After typing E and a line number or string in the Immeslidode of the Editor, you are
placed in the Full Screen Editor. The line specifieplased at the center of the screen with
the cursor on its first character.

At the upper right hand corner of the screen, the nuaibiie line containing the cursor is
printed. Somewhat to the left of this you may see tcatibar. This bar is the End-of-Line
Marker and it indicates the position at which an agdgisting will overflow the printer
line. You can put characters beyond this mark, but theyldtbe for information only, and
will not be printed within a printer listing. The positiohthe mark is calculated using the
line length parameter in the PARMS (see the Technicatnmdtion section) file. If this is
very large, the mark will not be shown.

The line is tabbed as it is in the listing, and the curgtbjump across the tabs as you move
it with the arrow keys.

The Edit mode commands are divided into two types: Cbkegocommands which are line
oriented, and Commodore key commands which are glolz|. €ntire listing-oriented).

The control key commands edit text and move the cunsqust the line the cursor is
presently on. Use the Commodore key commands to makgeh&mgroups of lines, or to
move about in the listing. All editing commands worketiter the Full Screen Editor was
started up using the Add, Insert or Edit commands. Wharay® through editing, press

and - at the same time. The line is accepted as it appedre@treen, no matter where the
cursor is when you exit the Edit mode.

To get the most out of the Merlin 128 Full Screen Editou should keep in mind that a full
screen editor is like a word processor. That is, aayacter you type is immediately entered
into whatever line the cursor is on.

With the Merlin 128 Full Screen Editor, if you can seenitthe screen, you can edit it, and
moving to a line is a simple matter of using the arrow k&ysther special commands to
move to the part of the listing you want to edit. Jastember, when you are using the Full
Screen Editor, think of yourself as using a word proceskere you can freely scroll to
whatever part of the page you want to edit, and the finauisent” is just your source
listing.

Page 21



Merlin 128 User's Manual The Editor

Control Key Commands (Line oriented)
Control-A (delete all)
Deletes all characters from the cursor to the entefite.
Control-B (beginning of line)
Moves the cursor to the beginning of the line.
Control-D (delete)
Deletes the character under the cursor. (See alsoEletekey)
Control-E (memory status)

This command displays a status box showing the numleerfré used bytes, and the
length of the clipboard, if any.

Control-F (find)

Finds the next occurrence of the character typed a#eCTRL-F. The cursor changes to
an inverse 'F' to indicate the Find Mode. To move theocueosthe next occurrence on the
line, press the character key again.

Control-I (toggle cursor)

Toggles the cursor mode between the insert cursor (inV@raed overstrike cursor
(inverse block). The insert mode of the cursor should eabinfused with entering the
Full Screen Editor using the Add and Insert commandsciiisor can be in the insert
mode regardless of whether lines are being added or ids&tte insert mode of the
cursor refers only to whether individual characters anmegoinserted (inverse 'l' cursor) or
typed over (inverse block).

The character insert mode defaults to ON upon entry.nWba change it with the TAB,
INST, or Control-l, it remains that way until chaxgggain. Thus, moving from one line
to another has no effect on this status.
The status is indicated by the type of cursor displayes an inverse 'I' when insert mode
is active, and an inverse block when the overstrike nodetive. (The cursor is an
inverse 'F' when you are in find mode.)

Control-K (character case change)

This command changes the case of the character urdeurttor.

Page 22



Merlin 128 User's Manual The Editor

Control-L (lower case convert)
Ordinarily, unless the cursor is in a comment or a€KAString, lower case characters
will be converted to UPPER CASE characters. Thisse defeated when the tabs are
zeroed. To override this conversion, or to reinstajast use the Control-L command.
This conversion is also in effect when you usedhé, c= W, orc= L find commands to
specify the text to find.

Control-N (end of line)
Moves the cursor to the end of the line.

Control-O (other characters)
This key is used as a special 'prefix’' key That is, if yanted to type a Control-N, for
example, as part of a line, the Editor would treat tbet@I|-N as a command key, rather
than entering it on the line you were editing. Likewig®) might want to type the
ESCAPE key as part of a PRTR initialization string. Teeany character on a line, just
press Control-O first, then immediately follow wigbur desired control character. The
control character will appear either in inverse, orHSICAPE and certain other keys, as a
Commodore graphics character. For multiple control cdbtars, Control-O will have to be
typed once each time before each character is entered.

Control-R (restore)
This command restores the original line. For exampigufhave used CTRL-A to delete
all characters to the end of the line, you can pre$LEH to undo the effects of the
CTRL-A command.

Control-W (find word)

This command jumps the cursor to the next occurrencevof@in the line
(alphanumeric).

Control-X (cancel global exchange)

This command can be used to cancel any global exchangeitwiie progress.
Cursor keys

The cursor (4-directional) keys move the cursor in gezigied direction.
DEL (delete key)

Deletes the character to theft of the cursor. (See also Control-D).

Page 23



Merlin 128 User's Manual The Editor

ESC (Escape key)

This command moves the cursor to the beginning of thelinextThis is similar to Return
except that ESCape does not insert a blank line.

HOME (Home key)

Pressing the Home key on any line causes that line numberremembered when tbe
HOME command is used.

INST (toggle cursor)

Toggles the cursor mode between the insert cursor (inVersed overstrike cursor
(inverse block).

Moving from one line to another has no effect on thaustaf the cursor; it only changes
when toggled with CTRL-I, INST or TAB.

RETURN

Pressing Return anywhere in the line causes the corsaovte to the beginning of the
next line and insert a blank line.

TAB

Toggles the cursor mode between the insert cursor (inV@raed overstrike cursor
(inverse block).

Moving from one line to another has no effect on thaustaf the cursor; it only changes
when toggled with CTRL-I, INST or TAB.

Page 24



Merlin 128 User's Manual The Editor

Commodore Key Commands (Entire listing oriented)

In addition to the line-oriented commands (control &kesnmands), the Full Screen Editor
uses Commodore key commands to move within the listingticaedit entire lines of text.
These commands are as follows:

C= A (select all text)

This command selects all text to be cut from the cutmemto the end of the listing= C
will then copy the selected textH X will cut the text), while pressing any other key will
cancel the selection.

This technique can be used to move the entire listing toligienard.

C= B (beginning of source)

This command moves to the beginning of the source listidgpates the cursor on the
eleventh line.

c= C (copy)

C= C starts the select mode to “cut” or “copy” text. Thistftimec= C is pressed, the
current line is selected and is shown in inverse. Usddha cursor oESCape keys to
extend the selection if desired, or press any othetdesgncel the selection. Additional
selected lines are shown in inverse. Use the up arrowokagjust the range selected if
you go too far, however, the select mode will be caddéou move the cursor above
the first selected line or past the top of the screen.

The second time= C is pressed, or if= A has already been pressed, a copy is made of
the selected text from the listing and is placed orclipboard. If you want to cut the text
from the listing, typec= X. The selected lines will disappear from the screeraamd
placed on the clipboard.

If you are unfamiliar with the idea of a "clipboardiig is just an analogy to how you
might put piece of paper clipped from a magazine, letterpeta clipboard, to hold it
temporarily while you were getting ready to put it infitel location. In the Commodore
128, the clipboard just refers to a memory buffer th&dshthe text you have selected
while you decide where you want the final text placed.

Page 25



Merlin 128 User's Manual The Editor

C= D (delete current line)

This command deletes the current lice DEL will delete the lineabove the cursor) and
places it in a special 'undo’ buffer which is independétiteoclipboard.

Thec= R command exchanges the current line with the conténbe cundo' buffer.
Therefore, to move a single line to another location, gmuld place the cursor on the line
to be moved, and then tyge D to delete the line. Then move the cursor to another li
press RETURNg= 1, orc= TAB to create an empty line, and pressR to replace that
line with the deleted line.

C= E (global exchange) (also called 'Find & Replace’)

Sometimes called 'Find & Replace’, this command wilyat search for a group of
words, and replace them with another. TeeE command opens a dialog box that asks
for the text to change, and the new text to repladeyibu press RETURN alone (a blank
entry) for either of these, the command is aborted.

If you enter the text in both fields and press RETUR,file is then searched for the
change text. Unlike the FIND command, it looks only fdf#ords. That is, the text
found must be bounded by non-alphanumeric charactersvir lite ignored.

If text is found with this method, the screen is regdnitvith the replacement made and
the cursor is placed on the first character of tigaocement. Now you must press a key to
continue. Pressing RETURN (or most any other contraiacher) will defeat the change
and the routine will look for the next occurrencehs text to change. Pressing the space
bar or any other character (except 'A") will acceptdhange and the routine will

continue.

You can back out of the global exchange while the cussmmn an entry by pressing either
ESCape or ControK. You can also type the 'A' key, which will cawleoccurrences to
be changed. Caution: this can be aborted only by RUN/SIFrGH¥ESET.

You can tell when the routine is finished by the thet during the exchange sequence,
the line number at the top right is missing. It willuet when there are no more matches
for the change text, or when you pr&3Cape or ControKX.

Page 26



Merlin 128 User's Manual The Editor

C= F (find text)

Thec= F command opens a window which asks for the find texteh finds the first
occurrence of the text in the entire text file. Téxt can be anywhere on a line. After the
first find, you can find the next occurrence by typingtaroc= F. The find mode is
indicated by the inverse 'F' at the top right of theecr You can edit the line and then
typecC= F to go to the next occurrence.

If there are more occurrences to be found, one or fbsegns will be shown next to the
line number at the top right of the screen. This stiaoim the line below the current line,
and only indicates the number of lines remaining with aetwwes, and not the total
number of occurrences.

If the c= F command is used after text has been selected, ondgldeted text will be
searched for the text to be found. When the searchdescompleted, the text is no
longer selected. Thus, you can usedhéd andc= C commands to search just a portion
of your listing.

Thec= B command and the Control-E status command both canceirttenode, as
does failure to find the text below the current line.

Thec=W command is identical to= F except that it finds only whole words bounded by
non-alphanumeric characters. If you type eittreiV or C= F to find the next occurrence,
this mode will change accordingly.
In all cases the line containing the text is moved tac#mer of the screen, unless it is
within the first 10 lines of the start of the source.

Cc= H (half screen)
This command toggles the split or half screen modéismhode, the bottom ten lines are
frozen in a window. A bar is shown above these lineseparate the frozen text from the
scroll window. Pressing= H again will cancel the half screen mode and refresh th
screen.

Cc=1 (insert line)

Pressingc= |1 or c= TAB will insert a blank line at the cursor.

C= L (locate label or line)

This command will locate the first occurrence of a lalbeany text in the label column.
Only the characters typed are compared with the lalzels, ome cases you may want to
end your input with a space.

Page 27



Merlin 128 User's Manual The Editor

If a number is entered after this command, the curdbmeve to the beginning of line
number specified. This is particularly handy when egditrsource file from a printed
listing.

Thec= L command asks for a label or any text to locate. It fthedfirst occurrence of
that text in the file, but only in the label colummli@the characters typed are compared
with the labels, so in some cases you may wish to/eadinput with a space.

The intended use for this command is to move rapidlygaracular place in the source.
You can use create your own 'markers' to enhance the ¢gpabihis command.
Therefore, if a line starts *7', you can specify *7tlastext to find for this command and
it will work.

If you type a number fathelabel in anc= L command, you will be sent to that line
number. This is convenient when editing a source file usipgnted listing.

In all cases the line containing the text is moved tac#mer of the screen, unless it is
within the first 10 lines of the start of the source.
Cc= N (end of source)

This command moves the cursor to the end of the soutiog lis

C= P (paste)
Pastes the contents of the clipboard at the lineatang the cursor. Only full lines are
moved. Using this command does not change the contettits ofipboard, so this
command can be used to replicate a range of lines.
If the c= P paste command is issued when a range of text has Heetedethe range will
be replaced by the text in the clipboard. Text deletdtis manner is not recoverable.
C=Q (quit)
This command quits the Full Screen Editor and goes tvidwe Menu. (Does not work in
Editor Immediate Mode — use ‘Q’).

C= R (replace) (See alsa= D)

This command exchanges the current line with the convétite ‘'undo’ buffer.
Therefore, pressing= R a second time will cancel the effect of the firstgste

Page 28



Merlin 128 User's Manual The Editor

UsingC= R when the cursor is on blank line will place the cotge@i the undo' buffer on
the line and place the empty line in the 'undo’ buffer.

Thec= R command can be used to move a single line. Place ther airthie beginning
of the line to be moved and pressR. Move the cursor to the desired location, press
RETURN to insert a blank line, and pressR again.

C= R can be used by itself to easily interchange two lines.plase the cursor on the first
line, press ~R, move the cursor to the second line, peeRsagain, move the cursor back
to where the first line was and pressR for the third, and final, time.

c=W (find word)

Thec=W command is identical to= F except that it finds only whole words bounded by
non- alphanumeric characters. If you type eittvelV or C= F to find the next
occurrence, this mode will change accordingly.

If the c= W command is used after text has been selected, onbelbeted text will be
searched for the word to be found. When the search haxbew®wleted, the text is no
longer selected.

C= X (cut highlighted text)

Similar toc= C, but selected text is removed from the screen aftagbmpied to the
clipboard. This is in contrast to=- C which leaves the original text on the screen after
copying to the clipboard. One use of this command iseé&Bsthenc= A to select
everything from the beginning of the file to the ead X will then cut it; anything else
will cancel the select mode. This provides a simple medmoving the entire file to the
clipboard.

C= Z (reprint screen)
This command reprints the screen so that the currenbdicemes the eleventh line on the
screen.

C= Up cursor (move up one page)
Moves the cursor up one page. TheUp cursor ana= Down cursor commands move

up or down one page at a time. This is approximately equivedéwoC= Left or C=
Right cursor commands.

Page 29



Merlin 128 User's Manual The Editor

C= Down cursor (move down one page)

Moves the cursor down one page.

C= Left cursor (move half-screen up)
Moves the cursor up 10 lines; that line then becomesléventh line on the
screen. This command has the effect of moving the cumento the bottom of the
screen and then moving the cursor to what was the lgiritiee screen.

C= Right cursor (move half-screen down)
Moves the cursor down 10 lines; that line then becohresleventh line on the
screen. This command has the effect of moving the cumento the top of the screen
and then moving the cursor to what was the bottom line@sditeen.

C= * (asterisk)

Produces a line of 32 asterisks.

c=1t (Vertical arrow)
Produces an asterisk, 30 spaces, and then another adtesknd thec= *
command can be used to produce a large box for titlestard information.
C= -(hyphen)

Produces a line of 1 asterisk and 31 hyphens.

Cc= (equal sign)

Produces a line of 1 asterisk and 31 equal signs.

C= ~(Horizontal arrow)

Quits the Full Screen Editor to the Editor Immedisitede. The colon prompt (:) appears
at the bottom of the screen to indicate that thedE@tnow in the Immediate Mode.

Page 30



Merlin 128 User's Manual The Editor

C= DEL (delete)

This command deletes the linbove the cursor and places it in a special 'undo’
buffer which is independent of the clipboard.

Thec= R command replaces the current line with the contefrtisecundo’ buffer.
Therefore, you could use= DEL to delete a line, move the cursor to another line, press
RETURN,C= 1, orc= TAB to insert a line, and press R to replace that line with the
deleted line.

Cc= HOME

Go to the line used for the last CTRL-HOME.

C= TAB (insert line)

Pressingc= TAB orcC= | will insert a blank line at the cursor.

The Editor's Handling of Strings and
Comments with Spaces

When entering strings or comments in the Add/InseBdir modes, you will sometimes
find the editor apparently inserting additional spaces. Fhoslly a display function,
however, and the editor will remove the added spaces thiedime is terminated.

In the case of ASCII strings, the restoration isyaldne when the delimiter is a quote (")or
a single quote ('). You can, however, accomplish éineesthing by editing the line,
replacing the first delimiter with a quote, pressing thermawow once, then press the up
arrow once. The spaces will be removed and then yothearedit the line and change the
delimiter back to the desired one.

Another approach, especially where an exact number oéspa other exact formatting of
the text is necessary, is to turn off the tab formgtby typing 'TABS' in the Immediate
mode. This will stop all automatic tabbing by the Editor.sTale automatically restored by
going to the Main Menu, and then returning to the Editor.

Page 31



Merlin 128 User's Manual The Editor

EDITOR COMMAND SUMMARY
CONTROL KEY COMMANDS (line oriented)

The Control Key commands consist of cursor moves iaedokriented commands.

Control-A  ----------- Deletes characters to endioél
Control-B  ----------- Moves cursor to beginning of line
Control-D = ----------- Deletes character under the ours
Control-E =~ ----------- Displays memory status window
Control-F ~ ----------- Finds next occurrence of nexacdcter typed
Control-I  ----------- Toggles insert and overstrike curso
Control-L =~ ----------- Toggles lower case conversion
Control-K = ----------- Changes case of character undesar
Control-N = ----------- Moves cursor to end of line

Control-O  ----------- Prefix key for typing control crecters
Control-R  ----------- Retrieves original line

Control-W = ----------- Finds next occurrence of wordime
Control-X = ----------- Cancels global exchange whilepirogress
Cursor keys ----------- Moves the cursor

DEL - Deletes character to left afirsor

ESC - Moves cursor to beginning of nexel
HOME ---------------- Remembers line for recall oy HOME
INST = - Toggles insert and overstrike aurs
RETURN  ------ome-- Moves cursor down and inserts blank |
TAB e Toggles insert and overstrike curso

COMMODORE KEY COMMANDS (entire listing oriented)

The Commodore Key commands are global commands, wieems they are generally
oriented to the whole listing as opposed to just the culiren(or a single character).

----------------- Selects text for cut from line to end of file
----------------- Moves to beginning. Cursor on eleventh line
----------------- Start text selection/Copy selected text to clipboard
----------------- Deletes line and places it in ‘'undo’ buffer
----------------- Global exchange (Search & Replace)
----------------- Finds next occurrence of text entered
----------------- Toggles half-screen mode

----------------- Inserts blank line at cursor

----------------- Finds first occurrence of label lime
----------------- Moves cursor to end of listing

----------------- Pastes contents of clipboard on current line

TERTIRTT TR T T
TZr T ITMOO®>

OOOOO(I?OOOOO

Page 32



Merlin 128 User's Manual The Editor

C=Q - Quits editor and returns to Main Menu
C=R - Exchanges current line with ‘'undo buffer
C=W - Finds next occurrence of whole word
C=X - Cut selected text to clipboard
C=2Z - Current line becomes eleventh line on screen
c=Up - Moves cursor up one page
c=Down  ----------- Moves cursor down on page
C=Left  ---meee- Moves cursor up 10 lines
c=Right  ----------- Moves cursor down 10 lines
c=DEL  -----e-- Deletes lineabove cursor; puts in ‘undo’ buffer
Cc=HOME ----------- Goes to line of last CTRL-HOME
c=TAB  -----—- Inserts a blank line at cursor
C=1  =mmmmmmmmemeeee- Produces 1 *, 30 spaces, and 1 *
C=%* - Produces a line of 32 asterisks
C=- - Produces a line of 1 * and 31 hyphens
C== - Produces a line of 1 * and 31 equal signs
= e e Returns editor to Immediate Mode

GENERAL REMARKS

When you move the cursor between lines, its horizgusition will jump around. This is

because it is based on the actual position in thealdenot on the screen position. If the

tabs are zeroed you will not notice this, except forfalcethat the cursor is never beyond
the last character in the line.

The maximum line length is 80 characters. Lines longar that will be truncated IF they
are edited.

You must return to the Immediate Mode-(-) in order to use the ASM command to
assemble, MON to use the Merlin 128 Monitor, or to Quit go to the Main Menu, etc. An
assembly will delete the contents of the clipboard.

ALTKEYS AND KEYDEFS

ALTKEYS and KEYDEFS are source files that containAhd key macros and the
Function Key definitions used by Merlin 128. You can add yeur omacros or definitions
or edit the existing ones. Both of these programs disduss#etail, including command
charts, in the section called Utilities.

OOPS

Virtually any editor action can he undone. You shouldemimer that the proper undo
command is of the same 'type' as the command you wamdip. Thus, any Control

Page 33



Merlin 128 User's Manual The Editor

key command is undone by Control-R. This includesth&, C= -, andC= = commands
which are considered line oriented commands for this purpose

The line deletion commands:- D andCc= DEL are undone by creating an empty line with
c=TAB followed byc= R. If you forget to create the empty line, type anott*eR and
repeat the above procedure.

Thec= R command undoes itself.

A CUT (c= X) is undone by a PASTE£ P) without moving the cursor off its line.

If you are entering a line of text in response to a ptosuch as a filename, PRTR
initialization, or dialog box, you can press Control-CCantrol-X to cancel the line.

Page 34



Merlin 128 User's Manual The Editor

MORE IMMEDIATE MODE COMMANDS

Merlin 128 also has Immediate Mode Find and Change commaurdisw you to list all
lines that have a certain opcode, label, etc. in tfieénd); or to change all or some
occurrences of a certain label or opcode to somethifeyeht (Change).

F (Find)

Find (d-string)

Find (line number) <d-string>
Find (range) <d-string>

Find (range list) <d-string>

F "A String" [finds lines with "A String"]

F 10 "STRING" [finds "STRING" if in line 10]

F 10,20 "HI" [finds lines in range of 10 through 20 that aontHI"]
F 10,20/50,99 "HI" [finds lines that contain "HI" in rangel0 through 20

and 50 through 99]

This command lists those lines containing the specifienlgstti is aborted with CTRL-C
or '/'key.

FW (Find Word)

FW (d-string)

FW (line number) <d-string>
FW (range) <d-string>

FW (range list) <d-string>

FW "LABEL" [find all lines with "LABEL"]

FW 20 "LABEL" [trytofind"LABEL"in20]

Fw 20,30 "PTR" [find all lines between 20 and 30 that coritairR"]
FW 20,30/50,99 "PTR" [find all lines between 20 and 30 and betweand09

that contain the word "PTR"]

This is an alternative to the FIND command. It willdf the specified word only if it is
surrounded, in source, by non-alphanumeric characters.

Therefore, FW "CAT" will find:
CAT
CAT-1
(CAT,X)

but will not find CATALOG or SCAT.

Page 35



Merlin 128 User's Manual The Editor

C (Change)

Change (d-string d-string)

Change (line number) <d-string d-string>
Change (range) <d-string d-string>
Change (range list) <d-string d-string>

C "hello"goodby [finds "hello™ and if told to do so will ahge it to
"goodbye"]
C 50 "hello"bye [changes in line 50 only]

C 50,100 "Hello"BYE [changes lines 50 through 100]
C 50,60/65,66 "AND"OR [changes in lines 50 through 60 and lines 65 and 66]

This changes occurrences of the first string to thersestring. The strings must have the
same delimiters. For example, to change occurrencspeling” to "spelling” throughout
the range 20,100, you would type C 20,100 "speling"spelling. If rgeranspecified the
entire source file is used.

Before the change operation begins, you are asked whethhevant to change "all" or
"some". If you select "some" by hitting the "S" key, dubtor stops whenever the first
string is found and displays the line as it would appetr the change.

If you then press the "Y" key, the change will be maidgou press RETURN, the change
will not be made. Typing any control character such®SAPE, RETURN or any others
will result in the change not being made. Any other kegh as "Y'(or even "N") will
accept the change. CTRL-C or"/" key will abort therd®process.

CW (Change word)

Change (d-string d-string)
Change (line numbers) <d-string d-string>
Change (range) <d-string d-string>
Change (range list) <d-string d-string>
CW "FTR"PRT [change all "FTR"s to "PRT"s]
CW 20 "PTR"PRT [as above but only in line 20]
CW 20,30 "PTR"PRT [do the same as the above but for lindsr@0gh 30]
CW 1,9/20,30 "PTR"PRT [same as above but include linesoligh 9 in the range]

This works similar to the CHANGE command with the ada=dures as described under
EW.

Page 36



Merlin 128 User's Manual The Editor

D (Delete)

Delete (line number)
Delete (range)
Delete (range list)

D 10 [deletes line number 10]
D 10,32 [deletes lines 10 through 32]
D 20,30/10,12 [deletes ranges of lines 10 through 12 and 20 tB@jugh

This deletes the specified lines. Since, unlike BASICJitteenumbers are fictitious, they
change with any insertion or deletiorherefore, when deleting several blocks of lines
at the same time, you MUST specify the higher range firsof the correct lines to be
deleted!

COPY

COPY (line number) TO (line number)
COPY (range) TO (line number)
COPY 10 TO 20 [copies line 10 to just before line 20]
COPY 10,20 TO 30 [copies lines 10 through 20 to just befor&lhe

This copies the line number or range to just ‘above’ theifspe number. It does not
delete anything.

MOVE

MOVE (line number) TO (line number)
MOVE (range) TO (line number)
MOVE 10 TO 20 [Move line 10 to just before 20]
MOVE 10,20 TO 30 [Move lines 10 through 20 to just before line 30]

This is the same as COPY but after copying, automatidellstes the original range. You
always end up with the same lines as before, but inerelift order.

Page 37



Merlin 128 User's Manual The Editor

L (List)

List

List (line number)
List (range)

List (range list)

L [list entire file]

L20 [list line 20 only]

L 20,30 [list 20 through 30]

L 20,30/40,42 [list 20 through 30 and then list lines 40 through 42]

Lists the source file with line numbers. Control cleéaes in source are shown in inverse,
unless the listing is being sent to a printer or other aodstrd output device.

The listing can be aborted by RUN/STOP, CTRL-C or witkey. You may stop the
listing by pressing the space bar and then advance & knénae by pressing the space
bar again. By holding down the space bar, the auto-reatdeof the Commodore 128
will result in a slow listing. Any other key will remwe the normal speed. This space bar
technique also works during assembly and the symbol tabi®pti Any other key will
restart it. This space bar pause also works during assambihe symbol table print out.

[period]
[only option for this command]

Lists starting from the beginning of the last specifiedjearfror example, if you type "Li
0,100", lines 10 to 100 will be listed. If you then use"."jdgtwill start again at 10 and
continue until stopped (the end of the range is not rdraezd).

/
|/ <line number>
/ [ start to list at last line listed ]
/50 [ start listing at line 50 ]

This command continues the listing from the last lineniper listed, or, when a line
number is specified, from that line. This listing contste the end of the file or until it is
stopped as in LIST.

Page 38



Merlin 128 User's Manual The Editor

OTHER IMMEDIATE MODE COMMANDS

TYPE (Type)

TYPE: FILENAME [display contents of a text file with line numbers ]
TYPE1L: FILENAME [display contents of a text file without line numbgrs

This command will display the contents of any textwirighout loading it into memory.
This is handy for viewing another source file without d®shg the one in memory. It
works with both SEQ and PRG source files, but with &R, the '.S' suffix must be
included. Do not use this command on files which are nofiitest

This command lists the full file. The listing can be aliby pressing the space bar, or
aborted by pressing RUN/STOP or th&el.

P (Print)

Print

Print (line number)
Print (range)

Print (range list)

P [print entire file]

P50 [print line 50 only]

P50,100 [print lines 50 through 100]

P1,10/20,30 [print 1 through 10, then print lines 20 through 30]

This is the same as LIST except that line numbersaradded.

PRTR (Printer)

PRTR (command)
PRTR 2 [activate printer 4n slot 1 with no printeing]
PRTR 2 "<CTRL-I>80N" [as above, but add Control-IS80ON to atizie the printer]
PRTR 2 "Page Title" [printer in slot 1, no init stririage Title” is the page
header]
PRTR [send formatted listing to screen]

This command is for sending a listing to a printer with gasgders and provision for
page boundary skips. (See the section on Configuratiatetails on setting up default
parameters, also "TTL" in the Assembler Section).

Page 39



Merlin 128 User's Manual The Editor

The entire syntax of this command is:
PRTR slot# " (string) "<page header>"
If the page header is omitted, the header will consipagé numbers only.

Theinitialization string may not be omitted if a page header isto be used. If no special
string is required by the printer, use a null string af tyuotes only, as in the example
showing "Page Title" (in which case a carriage retuthbe used).

No output is sent to the printer until a LIST, PRINT A8M command is issued.

TEXT
TEXT [only option for this command]

This convertsll spaces in a source file to inverse spaces. The purpdsis & for use on
word processing type "text" files so that it is net@ssary to remember to zero the tabs
before printing such a file. This conversion has neafbn anything except the Editor's
tabulation.

FIX
FIX [only option for this command]

This undoes the effect of TEXT. It also does a numbeéeafnical housekeeping chores.
It is recommended that FIX be used on all source fit® £xternal sources that are being
converted to Merlin 128 source files, after which thedheuld be saved.

NOTE: The TEXT and FIX routines are somewhat sloaveBal minutes may be needed
for their execution on large files. FIX will truncaday lines longer than 255haracters.

VAL
VAL "expression”
VAL "PTR [return value of label "PTR" |
VAL "LABEL" [gives the address (or value) of LABEL fdhe last assembly
done or "unknown label" if not found.]
VAL "$1000/2"  [returns $0800]
VAL "%1000" [returns $0008]

This will return the value of the expression as themasder would compute it. All forms
of label and literal expressions valid for the assendkewnalid for this command. Note
that labels will have the value given them in thestmecent assembly.

Page 40



Merlin 128 User's Manual The Editor

Hex-Dec Conversion

128 = $0080
$80 =128

If you type adecimal number (positive or negative) in the immedmatele, the hex
equivalent is returned. If you type a hex number, prefixetbtiythe decimal equivalent is
returned. All commands accept hex numbers.

GET
GET (obj adrs)
GET [put object in RAMO at the address specified in the source's
ORG]
GET $8000 [put object at location $8000 in RAMO]

This command is used to move the object code, after amlalssdrom its location in
RAML1 to its ORG location in RAMO. It is only acceptedht move will not overwrite
the assembler and any source file that may be in menfi@iy address is specified, the
object code will be moved to that location in RAMO. k& gorogram's ORG address
conflicts with Merlin 128 or a source file in memory,RANGE ERROR" message is
displayed.

This command is supplied for convenience. The recommendéubdfor testing a
program is to save the source cede, save the objectaratithen run the program from
BASIC or with the 'G' command from the MAIN MENU.

NEW
NEW [only option for this command]

Deletes the present source file in memory.

PORT

PORT (2 or 4,5,6,7)
PORT 4 [can be used to send output to printer]

Selects a printer in specified port for output, but dedormat output as does PRTR.

NOTE: PORT is automatically turned off after an ASM commadnd,not after a LIST or
PRINT command. The PORT command can be used to sendeantdy listing to the
printer unformatted and without page breaks. If formattimdy@age breaks are desired,
use the PRTR command. Unless you have a specific reasosifig the PORT command,
PRTR is recommended instead.

Page 41



Merlin 128 User's Manual The Editor

USER
USER
USER 1 [example for use with XREF]
USER O: FILENAME  [example for use with PRINTFILER]

This does a JSR to the routine at $B00. The routine at 8880 begin with a CLD
instruction.

TABS
TABS <number><, number><,...> <"tab character">
TABS [clear all tabs]
TABS 10,20 [set tabs to 10 & 20]
TABS 10,20™ [as above, space is tab character]

This sets the tabs for the editor, and has no effetht@assembler listing. Up to nine tabs
are possible. The default tab character is a spacenpumay be specified. The assembler
regards the space as the only acceptable tab charadies &eparation of labels, opcodes,
and operands. If you don't specify the tab charactarm,ttieelast one used remains.
EnteringTABS and aRETURN will set all tabs to zero.

LEN (Length)
LEN [only option for this command]

This gives the length in bytes of the source file, aeditimber of bytes free.

W (Where)
Where (line number)
W 50 [where is line 50 in memory]
WO [where is end of source file]

This prints in hex the location in memory of the tstdithe specified line. "Where 0" (or
"WO0") will give the location of the end of source.

Page 42



Merlin 128 User's Manual The Editor

MON (Monitor)
MON [Only option with this command]
The Merlin 128 Monitor is offered as an alternative to@BM Monitor As with the
CBM Monitor, the bank is specified by the first digitaofive digit address. You can use
the 'G' command to run a program in memory, but the fpeécegisters are not picked up
so this is not as useful for debugging as the CBM MonitdRK will send you to the
CBM Monitor. You may re-enter Merlin 128 by pressing 'Q'sTdoes to the Main Menu.
Merlin 128 MONITOR COMMANDS:
Prompt = $

EXAMPLE COMMENTS

$1000: 02 1F 2C Note that proper entry format is byte-spaceetayte

$1000I Disassemble 20 lines beginning at $1000. ASCII indictaght.
$1000Ill Disassemble 40 lines beginning at $1000. ASCII ireticat right.
Multiple I's Continues disassembly at current address.

$1000h Does a hex dump of 16 bytes at $1000. ASCII indicatagha

h Alone continues the dump from current address.

Multiple h's Dumps multiple 16 byte blocks.

$1000, 1100h Does a hex dump of the designated range. Note t®uosed here.

$1000C= 2000,201Fm Moves range $2000 - $201F to $1000. This supports both upward
and downward moves.

$1000, 2000z Zeros this range.

$1000C= 2000,201Fv Compares the range $2000 - $201F with that starting at $1000
and displays contents of both when differencesauad.

$1000g Jumps to a program at $1000. Return by RTS. A BRK wallsaisd
you to the CBM Monitor.

Page 43



Merlin 128 User's Manual The Editor

$r Returns to Editor.
$q Returns to the Main Menu. This is a "safe" return évir@ zero
page locations have been changed.
TRON (Truncate On)
TRON [only option for this command]
When used as an Immediate command, sets a flag whichgdu8T or PRINT, will

suppress printing of comments that follow a semicolomakes reading of some source
files easier.

TROF (Truncate Off)
TROF [only option for this command]
When used as an Immediate command, returns to the dedadition of the truncation
flag (which also happens automatically upon entry to thtereidtom the Main Menu or
from the Assembler). All source lines when listed anted will appear normal.
FUN (Function)
FUN (Number): Definition [temporarily redefine a furanikey]
This command can be used to temporarily redefine any funkéwfrom within the
Editor. For example, 'FUN4:TYPE' would cause the F4 keydduwre 'TYPE' when
pressed. It is not possible to include a carriage retutme definition. However, you

could include an extra character and then use the Moaitdrange the extra character to
the carriage return.

Q (Quit)
Q [only option for this command]

Exits to Main Menu.

Page 44



Merlin 128 User’'s Manual The Editor

ASSEMBLING A FILE
Once you have entered and edited your source listing, yowamt to assemble itASM
does that!
ASM (Assemble)
ASM [only option for this cmd]
This passes control to the assembler, which attempisstmble the source file.

If you wish to have a formatted printed listing of aseambly, just use the PRTR
command immediately before typing in the ASM command.

Assembly may be terminated at any point by pressing RUNPSGICControl-C.
ESC (Escape)
ESC [only option for this command]
During the second pass of assembly, pressing the ESCilkéyggle the list flag, so that

the listing will either stop or resume. This is defdafea LST opcode occurs in the
source, but another ESC will reinstate it.

Page 45



Merlin 128 User’'s Manual The Assembler

THE ASSEMBLER

In Merlin 128, the Editor is used to create and edit the sdisting from which the final
program (object code) will be assembled. The Assembldrat part of Merlin 128 which
actually interprets your source code to create the firgram.

The Assembler portion of Merlin 128 is distinct onlycmncept. In practice, both the Editor
and Assembler are resident in the machine at all tiemesthus both are available without
having to be aware of which is in operation at any gtiaa. This is in contrast to many
other assemblers, in which the Editor and Assemblerscanpletely separate programs,
necessitating the switching between them by loading andnmgimmdependent programs,

and often a requirement to save the source file tobdifdre an assembly can even be done.

This section of the documentation explains the syntéixase commands, or directives, that
can be used in the source listing itself, and which diveiin 128 to perform some

function while assembling the object code. These atentrast to the Editor commands
which are used to merely edit the source file.

An assembler directive is used to communicate an a@#dasetassembler which is more
complex than that addressed by just the usual opcodes widregprocessor itself.

For example, in the simplest assembler possible, amntands like LDA, JSR, etc. would
be recognized by the assembler. However, the firsttiaieyou want to create a data table,
an instruction would be required by the assembler whichdefine one or more bytes that
are pure number values, as opposed to specific opcodess @lasved in virtually all
assemblers by creating the assembler directive, or ps@udd® ‘HEX'.

Thus the assembler can create a byte of data like this:

1 LABEL HEX F7 :STORES BYTE '$F7'

Now, suppose that the data you wanted to store was an AB&Hcter string. With only

the HEX directive, you'd have to look up all the ASCII euder equivalents, and encode
them in your program with individu®lEX statements.

Wouldn't it be nice, though, if the assembler itsetf bdarger repertoire of 'new' commands
(i.e. directives) that included ones for defining charastir@ngs? You bet! And Merlin 128
has a lot of them.

The simplest iISTXT’ , and a typical line would look like this:

1 LABEL TXT 'THISIS ATEST' ;STORE ENTIRE CHARBTER STRING

When assembled, Merlin 128 would automatically do the 'lookfupecASCII character
equivalents, and store the bytes in memory at whethaéstatement

Page 46



Merlin 128 User's Manual The Assembler

occurred in your program. Along with the Editor, thei@grand power of assembler
directives is the other biggest factor in determiningpiber of a given assembler. Merlin
128 is outstanding in this area with a wide complemeadirettives for every occasion.

This section of the documentation will explain the ayrtb use in your source files for each
directive, and document the features that are avaitableu in the assembler.

About The Assembler Documentation
The assembler documentation is broken into three sa&itions:

1) Preliminary Definitions,
2) Assembler Syntax Conventions,
3) Assembler Pseudo Opcode Descriptions.

The last two sections are each broken down furtherti@dollowing:

Assembler Syntax Conventions:
1) Number Format
2) Source Code Format
3) Expressions Allowed by the Assembler
4) Immediate Data Syntax
5) 6502 Addressing modes

Assembler Pseudo Opcode Descriptions:
1) Assembler Directives
2) Formatting Pseudo Ops
3) String Data Pseudo Ops
4) Data and Storage Allocation Pseudo Ops
5) Miscellaneous Pseudo Ops
6) Conditional Pseudo Ops
7) Pseudo Ops for Macros
8) Variables

The Assembler Syntax Conventions illustrate the syotaxline of assembly code, the
proper method to specify numbers and data, how to consssembler expressions and the
proper syntax to use to specify the different addressirdgmallowed by the 6502
microprocessor. This section should be understood prigsitg the assembler, otherwise it
is will be difficult to determine the acceptable methtalsonstruct a proper expression as
the operand for a pseudo op.

The Assembler Pseudo Opcode Descriptions illustratiitfetions of the many Merlin 128
pseudo ops, the correct syntax to use and exampleslopsewdo ops use.

Page 47



Merlin 128 User's Manual The Assembler

PRELIMINARY DEFINITIONS

The type of operand for almost all of Merlin 128's pseudocampsthe 6502 microprocessor
can be grouped into one of four categories:

1) Expressions

2) Delimited Strings (d-strings)
3) Data

4) Filenames

Expressions
Expressions are defined in the Assembler Syntax Convesrgiection of the manual.

Delimited Strings

Delimited Strings are defined in the Editor section efitteanual, but that definition is
repeated here for continuity.

Several of the Pseudo Opcodes, and some of the 6502 opdodethailr operand to be a
string. Any such string must be delimited by a non-numéracaxcter other than the slash (/)
or comma (,). Such a string is called a delimited strmt@glestring”. The usual delimiter is a
single or double quote mark (" or ).

Examples:
"this is a d-string"
'this is another d-string"
@another one@
Zthis is one delimited by an upper case zZ
"
"

Note that delimited strings used as the objeangf6502 opcodenust be enclosed in single
or double quotes. If not, the assembler will interpnetd-string to be a label, expression or
data instead.

Take special note that some of the pseudo ops as wh# &602 opcodes use the delimiter
to determine the hi-bit condition of the resultant stringsuch cases the delimiter should be
restricted to the single or double quote.

Data

Data is defined as raw hexadecimal data composed ofgie @i..9 and the letters
A...F.

Page 48



Merlin 128 User's Manual The Assembler

Filenames
Filenames are defined as the name of a file withoutlahisniters, e.g. no quotes
surrounding the name. Source file names are suffixdd“vidt, Object files are suffixed
with a“.0” . Text files,USE files andPUT files do not have a prefix or suffix. The
applicable suffix should not be used when loading or saves) f
When a filename is used in a source listing, itr mustuseounded by quotes. For example:

DSK “MYFILE”

SAY “MYFILE”

PUT “FILEONE”

ASSEMBLER SYNTAX CONVENTIONS

SOURCE CODE FORMAT
Syntax of a Source Code Line
A line of source code typically looks like:

LABEL OPCODE OPERAND ;COMMENT

and a few real examples:

1 START LDA  #50 ;THIS IS A COMMENT
2 * THIS IS A COMMENT ONLY LINE
3 ;TABBED BY EDITOR

A line containing only a comment can begin wfith as in line 2 above. Comment lines
starting with*;” , however, are accepted and tabbed to the commeheBah 3 above. The
assembler will accept an empty line in the source caodendl treat it just as a SKP 1
instruction (see the section on pseudo opcodes), excéphenae number will be printed.

The number of spaces separating the fields is not imgoeacept for the editor's listing,
which expects just one space.

Source Code Label Conventions

The maximum allowable LABEL length is 13 characters,rbate than 8 will produce
messy assembly listings. A label must begin withaatter at least as large, in ASCII
value, as the colon, and may not contain any chasaletes, in ASCII value, than the
number zero. Note that periofiy are not allowed in labels since the period is used to
specify the logical OR in expressions. Labels are CAERSITIYE. Thus, these are three
different labels: START, Start, start.

Page 49



Merlin 128 User's Manual The Assembler

A line may contain a label by itself. This is equivalenequating the label to the current
value of the address counter.

Source Opcode and Pseudo Opcode Conventions
The assembler examines only the first 3 charactete@®PCODE (with certain exceptions
such as macro calls). For example, you carP4AS8E instead oPAG (because of the

exception, the fourth letter should not be a D, howevédrg assembler listing will not be
aligned with an opcode longer than five characters utiless is no operand.

Operand and Comment Length Conventions
The maximum allowable combin€dPERAND + COMMENT length is 64 characters.
You will get anOPERAND TOO LONG error if you use more than this. A comment line
by itself is also limited to 64 characters.
NUMBER FORMAT
The assembler accepts decimal, hexadecimal, and binaryioahtata. Hex numbers must
be preceded b¥” and binary numbers b$o” , thus the following four numbers are all
equivalent:

Dec Hex Binary Binary

100 $64 %1100100 9%01100100
as indicated by the last binary number, leading zeroiganeed.
Immediate Data vs. Addresses
In order to instruct the assembler to interpret a numbenmediate data as opposed to an
address, the number should be prefixed withi’a The“#” here stands fdnumber" or
"data" . For example:
LDA #100 LDA #3$64 LDA #%1100100
These three instructions will all LOAD the Accumulavath the number 100, decimal.
A number not preceded B¥" is interpreted as an address. Therefore:

LDA 1000 LDA $3E8 LOA %1111101000

are equivalent ways of loading the accumulator wighityte that resides in memory
location $3ES8.

Page 50



Merlin 128 User's Manual The Assembler

Use of Decimal, Hexadecimal or Binary Numbers

We recommend that you use the number format that is pipgi® for clarity. For example,
the data table:

DA $1
DA $A
DA $64
DA $3E8
DA $2710
is a good deal more mysterious than its decimal eqantal
DA 1
DA 10
DA 100
DA 1000
DA 10000
Similarly,
ORA #%$80

is less informative than
ORA #%210000000

which sets the hi-bit of the number in the accumulator.

EXPRESSIONS ALLOWED BY THE ASSEMBLER

To make the syntax accepted and/or required by the assangalerwe must define what is
meant by an “expression”.

Primitive Expressions

Expressions are built up from "primitive expressions” byafsaithmetic and logical
operations. The primitive expressions are:

1. Alabel.

2. A number (either decimal, $hex, or %binary).

3. Any ASCII character preceded or enclosed by quotes glesjuiotes.
4. The * character (stands for the current address).

Page 51



Merlin 128 User's Manual The Assembler

All number formats accept 16-bit data and leading zemseaver required. In case 3, the
"value" of the primitive expression is just the ASCallue of the character. The high-bit will
be on (value > $7F:) if a quof® is used, and off (value < $80) if a single qudtés used.

Arithmetic and Logical Operations in Expressions

The assembler supports the four arithmetic operatigns?/ (integer division), and
(multiplication). It also supports the three logicpeoations! (Exclusive OR), (OR), and
& (AND).

Building Expressions

Expressions are built using the primitive expressions cittibeve, either with or without
arithmetic and/or logical operations. This means thptessions can take the form of
primitives or primitives operated on by other primitivesigdihe arithmetic and logical
operators.

Some examples of legal expressions are:

#01 (primitive expression = 1)

#$20 (primitive expression = 32 dec)
LABEL (primitive consisting of a label)
#'A” (primitive consisting of letter "A')
* (primitive = current value of PC)

The following are examples of more complex expressions

LABEL1-LABEL2 (LABEL1 minus LABEL?2)
2*LABEL+$231 (2 times LABEL plus hex 231)
1234+%10111 (1234 plus binary 10111)
“K'-"A+1 (ASCII "K" minus ASCII "A" plus 1)
"0"ILABEL (ASCII "0" EOR LABEL)
LABEL&S$7F (LABEL AND hex 71)

*-2 (current address minus 2)

LABEL.%10000000 (LABEL OR binary 10000000)

Parentheses and Precedence In Expressions

Parentheses are not normally allowed in expressidrey are not used to modify the
precedence of expression evaluation. All arithmetic agitdd operations are evaluated left
to right (2+3*5 would assemble as 25 and not 17).

Parentheses are used to retrieve a value from the mdmgation specified by the value of
the expression within the parentheses, much like indi@dressing. This use is restricted to
certain pseudo ops, however.

Page 52



Merlin 128 User's Manual The Assembler

For example:

DO ($300)

will instruct the assembler to generate code if the vaiumeemnory location $300, at the time
of assembly, is non-zero.

Example of Use of Assembler Expressions

The ability of the assembler to evaluate expressions asit AB2-LAB1-1 is very useful
for the following type of code:

COMPARE LDX #EODATA-DATA-1
LOOP CMP  DATA, X ;found
BEQ FOUND
DEX
BPL LOOP
JMP REJECT ;not found
DATA HEX CACFC5D9
EODATA EQU *

With this type of code, you can add or delete some dD&EA and the value which is
loaded into the X index for the comparison loop willdogomatically adjusted.

IMMEDIATE DATA SYNTAX

For those opcodes such as LDA, CMP, etc., which acoepediate data (hnumbers as
opposed to addresses) the immediate mode is signed legmgthe expression with “#”.

An example is LDX #3. In addition:

#<expression produces the low byte of the expression

#>expression produces the high byte of the expression

#expression also gives the low byte (the 686&2s not accept
2-byte DATA)

#/expression Is optional syntax for the high bytehefdxpression

Page 53



Merlin 128 User's Manual The Assembler

6502 ADDRESSING MODES

The Merlin 128 Assembler accepts all the 6502 opcodes \atlalgtd mnemonics. It also
acceptBLT (Branch if Less Than) arBiGE (Branch if Greater or Equal) as pseudonyms
for BCC and BCS, respectively.

There are 12 addressing modes available. The appropriate $ynthese are:

Addressing Mode  Syntax Example
Implied OPCODE CLC
Accumulator OPCODE ROR
Immediate (data) OPCODE #expr ADC #$F8
CMP #'M”
LDX #>LABELI-LABEL2-I
Zero page (address) OPCODE expr ROL 6
Indexed X OPCODE expr,X LDA $EO,X
Indexed Y OPCODB expr,Y STX LABEL,Y
Absolute (address) OPCODE expr BIT $300
Indexed X OPCODE expr,X STA $4000,X
Indexed Y OPCODE expr,y SBC LABEL-1,Y
Indirect JMP (expr) JMP ($3F2)
Preindexed X OPCODE (expr,X) LDA (6,X)
Postindexed Y OPCODB (expr),Y STA ($FE),Y

Special Forced Non-Zero Page Addressing

There is no difference in syntax for zero page and alesoiotles. The assembler
automatically uses zero page mode when appropriate. Merliprb2&les the ability to
force non-zero page addressing. The way to do this gd@mything (except “D”) to the
end of the opcode. Example:

LDA $10 assembles as zero page (2 bytes) while,
LDA: $10 assembles as non-zero page (3 bytes).

Also, in the indexed indirect modes, only a zero page sgje is allowed, and the
assembler will give an error message if the “expr” dudsvaluate to a zero page address.

NOTE: The "accumulator mode" does not require an operandeftiee TA"). For example,
to do an LSR of the accumulator, you can use:

1 LABEL LSR ; LOGICAL SHIFT RIGHT
Some assemblers perversely require you to put an "thieimperand for this mode.

The assembler will decide the legality of the addressindenfior any given opcode.

Page 54



Merlin 128 User’'s Manual The Assembler

ASSEMBLER PSEUDO OPCODE DESCRIPTIONS
EQU or = (EQUate)

Label EQU expression

Label = expression (alternate syntax)
START EQU $1000 [equate START to $1000]
CHAR EQU "A" [equate CHAR to ASCII value of A]
PTR = * [PTR equals present address in the ddsdreource
listing.]
LABEL = 55 [LABEL equals the decimal value of 55]

LABEL EQU  $25
LDA LABEL

This will Load the Accumulator with the value thatsred inlocation $25.

LABEL EQU  $25
LDA  #LABEL

This will Load the Accumulator with thealue of $25.

IMPORTANT:  Forgetting to include the # symbol to load an imnediate value is
probably the number-one cause of program bugs. If you're havimpa problem,
double check immediate value syntax first!

EQU is used to define the value of a LABEL, usually aemcxt address or an
often-used constant for which a meaningful name is dkdires recommended that these
all be located at the beginning of the program.

NOTE: The assembler will not permit an "equate” to a page number after the label
equated has been used, since bad code could result from sication (also see
"Variables").

For Example:
1 LDA #LEN
2 LABEL DFB  $00
3 DFB  $01
4 LEN EQU *-LABEL

When assembled, this will give ahLEGAL FORWARD REFERENCE IN LINE 4"
error message. The solution is as follows:

1 LDA  #END - LABEL
2 LABEL DEB  $00

3 DFB  $01

4 END

Page 55



Merlin 128 User's Manual The Assembler

Note that Labels are CASE SENSITIVE. Therefore,assembler will consider the
following labels as different labels:

START [upper case label]
Start [mixed case label]
start [lower case label]

EXT  (EXTernal label)

label EXT [label is external labels name]
PRINT EXT [define PRINT as external]

This pseudo op defines a label as an external label fdoyyuse Linker. The value of the
label, at assembly time, is set to $8000, but the finalevisl resolved by the linker. The
symbol table will list the label as having the valu&8d00 plus its external reference
number (0-$FE). See the LINKER section of the manuatniore information on this
opcode.

ENT (ENTry label)

label ENT
PRINT ENT [define PRINT as entry label]

This pseudo op will define the label in the label columar@SNTRY label. An entry
label is a label that may be referred to a&Aii ernal label by anothdREL code module.
The true address of an entry label will be resolvechbyINKER .

TheREL code module being written, or assembled, may referetBNT label just as if it
were an ordinary label. It can B®QU'd, jumped to, branched to, etc.

The symbol table listing will print the relative addregshe label and will flag it as an
“E”.

See thelINKER section of the manual for more information on thisamj®:

Page 56



Merlin 128 User’'s Manual The Assembler

ORG (set ORIGin)

ORG expression

ORG

ORG $1000 [start code at $1000]

ORG START+END  [start at value of expression ]
ORG [re-ORG]

Establishes the address at which the program is designedl. tib defaults to $8000.
Ordinarily there will be only on®RG and it will be at the start of the program. If more
than oneORG is used, the first one establishesEH®OAD address, while the second
actually establishes the origin. This can be used toecegabbject file that would load to
one address though it may be designed to run at anothersaddres

You cannot us®RG *-1 to back up the object pointers as is done in some atssmb
This must be done instead by -1

ORG without an operand is accepted and is treated'BRE@RG" type command. It is
intended to be used to reestablish the correct addressrpitetea segment of code
which has a differe®DRG. (When used in REL file, all labels in a section between an
"ORG address" and afDORG no address" are regarded as absolute addresses. This is
meantONLY to be used in a section to be moved to an explicit asljres

Example ofORG without an operand:

1 ORG  $1000
1000: AO 00 2 LDY #0
1002: 20 21 10 3 JSR MOVE "MOVE" IS
1005: 4C 12 10 4 JMP CONTINUE ;NOT LISTED.
5 ORG  $300 ;ROUTINE TO
0300: 8D 08 CO 6 PAGES3 STA  MAINZP ;BE MOVED
0303: 20 ED FD 7 JSR COouT
0306: 8D 09 CO 8 STA  AUXZP
0309: 60 9 RTS
10 ORG ;REORG
1012: A9 C1i 11 CONTINUE LDA #'A”
1014: 20 00 03 12 JSR PAGE3

Sometimes, you will want to generate two blocks of codk separat©RGs in one
assembly. There are three ways of doing this. Eachvesd directiv DSK, SAV and
DS) that are described later in this manual, but all areepted here in the interest of
completeness.

In this first example, two separate disk files arete@avith independer®RG values by
using theDSK command. This command directs the assembler to assathbbde to
disk following the DSK command. The file is closed when either the assenmaly er
anotherDSK command is encountered.

Page 57



Merlin 128 User's Manual The Assembler

OCoOoO~NOUITrWNE

kkkkkkkkkkkkkkhkkhkkk

* MULTIPLE ORG'S *
* SOLUTION#1 *
* DSK COMMAND *

kkkkkkkkkkkkkkhkkhkkk

DSK  "FIIEONE"
ORG  $8000
LDA #0

DSK  "FILETWO"
ORG  $8100
LDY #1

In this second example, two separate disk files are agzated with independe@RG
values, but this time by using tB&V command. This command directs the assembler to
save all code assembled previous to the SAV code disk.

O©Coo~NOOUTh~WNPE

kkkkkkkkkkkkkkhkkhkkik

* MULTIPLE ORG'S *
* SOLUTION#2 *
* SAV COMMAND *

kkkkkkkkkkkkkkhkkhkkik

ORG  $8000
LDA #0
SAV  "FILEONE"

ORG  $8100
LDY #1
SAV  "FILETWO"

In this last example, just one file is created on,dwsk the two blocks of code are
separated by approximately a $100 byte gap (less the sizefo$tlvwde block, of

course).

Please read the section 8AV for more information about multipRGs in a program.

kkkkkkkkkkkkkkhkkkkkk

* MULTIPLE ORG'S *
* SOLUTION#3 *
* bS COMMAND *

kkkkkkkkkkkkkkhkkhkkhk

ORG  $8000

LDA #0

DSt - or could have been DS $8100-*
LDY #1




Merlin 128 User's Manual The Assembler

REL (RELocatable code module)

REL
REL [only option fothis opcode]

This opcode instructs the assembler to generate codeditgsatible with the relocating
linker. This opcode must occur prior to the use or definiticany labels. See the
LINKER section of this manual for more information on thisaxge

OBJ (set OBJect)

OBJ expression
OBJ $4000 [use of hex address in RAM1]
OBJ START [use with a label]

The OBJ opcode is accepted only prior to the start ofdde and it only sets the division
line between the symbol table and object code areasmomewhich defaults to

$A000). The OBJ address is accepted only if it lies bet®d800 and $FEEOQ. This may
cause you a problem if you forget this fact and try to askealisting OBJ'ed somewhere
else, such as $300, for example.

Nothing disastrous will happen if OBJ is out of range; wy@mreturn to the Main Menu
to save your object file, no object file address and temgtues will be displayed on the
screen, and Merlin 128 will simply beep at you if you trgave an object file.

The main reason for using OBJ is to be able to quitskerabler directly, test a routine in
memory, and then be able to immediately return to $eerabler to make any corrections.
If you want to do this, simply use the GET command (EXdenGET $8000) before
quitting to BASIC.

Most people should never have to use this opcode. If thedREode is used then OBJ is
disregarded. If DSK is used then you can, but should nat teawset OBJ to $FEEO to
maximize the space for the symbol table.
PUT (PUT a text file in assembly)
PUT "filename"
PUT "Filename" [PUT's file FILENAME]
PUT "Filenarne",9 [PUT's file FILENAME from devicel9

PUT "filename' reads the named file and "inserts" thatlocation of the opcode.

Page 59




Merlin 128 User's Manual The Assembler

Occasionally your source file will become too largegseanble in memory. This could be
due to a very long program, extensive comments, dummy ségjneén In any case, this
is where thd?UT opcode can make life easy. All you have to do is diyae program
into sections, then save each section as a sepexafde. ThePUT opcode will load

these text files and “inserthem in the “Master” source file at the locatiortlod PUT
opcode. This "Master" source file usually only contains &g amacros (if used), aiadl

of your PUT opcodes.

A "Master" source file might look something like this:

kkkkkkkkkkkkkkkkkkk

*

Master Source*

kkkkkkkkkkkkkkkkkkk

*

*

*

* %

LABEL DEFINITIONS
LABEL1 EQU $00
LABEL2 EQU $02
BSOUT EQU $FFD2

MACRO DEFINITIONS

SWAP MAC
LDA ]
STA ]2
<<<

SAMPLE SOURCE CODE

LDA #LABEL1
STA LABEL2
LDA #/LABEL1
STA LABEL2+1
LDA LABEL1
JSR BSOUT
RTS

BEGIN PUTFILES

PUT "FILE1" ;FIRST SOURCE FILE SEGMENT
PUT "FILE2" ;SECOND SOURCE FILE SEGMENT
PUT "FILES" ;THIRD SOURCE FILE SEGMENT

Note that you cannot defifdACRO s from within aPUT file. Also, you cannot call the
nextPUT file from within aPUT file. All MACRO definitions andPUT opcodes must
be in the "Master" source file. There are other useBWT files such a®UTting
portions of code as subroutin€?)Tting a file of global page equates, etc. The
possibilities are almost endless.

Here's an example of a master program that ub&sT3files to create a final object file,
"FINAL.O", that is called from a BASIC program:

Page 60



Merlin 128 User's Manual The Assembler

1 * MASTER CALLING PROGRAM

2

3 BSOUT EQU $FFD2

4

5

6 ORG  $8000

7

8

9 PUT "FILE1" : Named "FILE18n disk
10 PUT "FILE2" : Named "FILE2" on disk
11 PUT "FILES" : Named "FILES" on disk

And here are the text files that the master progralia m using the PUT commands:

1 *  FILE1

2

3 LDX #0

4 LOOP1 LDA  STRING1,X

5

6 JSR BSOUT

7 INX

8 BNE LOOP1

9 STRING1 TXT  'THIS IS FILE 1',00
1 *  FILEZ2

2

3 FILE2 LDX #0

4 LOOP2 LDA  STRINGZ2,X

5

6 JSR BSOUT

7 INX

8 BNE LOOP2

9 STRING2 TXT 'NOW: its FILE 2',00
1* FILES3

2

3 FILE3 LDX #0

4 LOOP3 LDA  STRINGS,X

5 BEQ DONE

6 JSR BSOUT

7 INX

8 BNE LOOP3

9 DONE RTS

10 STRINGS TXT  'FINALLY FILE 3',00

EachPUT file (FILEL, FILE2, FILE3) prints a message about whithif is.

Page 61



Merlin 128 User's Manual The Assembler

NOTE: "Insert" refers to the effect on assembly andmohe location of the source. The
file itself is actually placed just following the maiousce. These files are in memory only
one at a time, so a very large program can be asedmbing the PUT facility.

There are two restrictions on a PUT file. Firstréheannot be MACRO definitions inside
a file which is PUT; they must be in the main sourcen@ USE file. Second, a PUT file
may not call another PUT file with the PUT opcode c@idirse, linking can be simulated
by having the "main program" just contain the macro defimtiand call, in turn, all the
others with the PUT opcode.

Any variables (such as |JLABEL) may be used as "locatiavdes. The usual local
variables ]1 through ]8 may be set up for this purpose usey AR opcode.

The PUT facility provides a simple way to incorporatenfused subroutines, such as
PRDEC, in a program.

If there is an error during assembly, the error withslboth the line number of the PUT
opcode in the Master file and that in the PUT file.

The PUT opcode accepts both SEQ and PRG type sourcédiiteéyou're using the PRG
type, you must include the ".S" suffix in the filename.

If you are working with PRG files written with Merl#4, use the LOAD command and
resave them with Merlin 128.

USE (USE atext file as a macro library)

USE filename
USE "FILENAME"
USE "FILENAME",9 [Device Number]

This works as does a PUT but the file is kept in menlbiy.intended for loading a
macro library that is USEd by the source file.

VAR (setup VARIiables)

VAR expr;expr;expr...
VAR 1;$3;LABEL [setup VAR's 1,2 and 3]

This is just a convenient way to equate the variablgd8.]IVAR 3;$42;LABEL" will set
11 =3,]2 =%42, and ]3 = LABEL. This is designed for uss prior to a PUT. If a PUT
file uses ]1-]8, except in PMC (or>>>) lines for callingeros, therenust be a previous
declaration of these.

Page 62



Merlin 128 User's Manual The Assembler

SAV  (SAVe object code)

SAYV "filename"
SAV "FILE"
SAV "FILE",9

"SAVE filename" will save the current object code unther specified name. It will not
add the suffiX.O" to the file name as would happen in the Main Menu. @iise, it acts
exactly as does the Main Menu object saving command, baih ibe done several times
during assembly.

This pseudo-opcode provides a means of saving portions of a probgkéng more than
one ORG. It also enables the assembly of extremegg files. After a save, the object
address is reset to the last specification of OBAd 88000 by default.

Files saved with the SAVe command will be saved to BDQo the correct address.

SAV allows you to save sections of assembled OBJECT daxiieg an assembly. It saves
all assembled code in the current assembly at the aowitich the SAV opcode occurs.
This appliesonly to the first SAV in a source. With each additional SAR&rlin 128 only
saves the object code generated since the last B feature allows you to use one
source file to assemble code and then SAVe sectiseparate files. Together with the
PUT and DSK, SAV makes it possible to assemble extrelawgg files.

*hkkkkkkkkkhkkkkkkkkk

* SAV Sample *

*kkkkkkkkkkkkkkkkk

*

* LABEL DEFINITIONS

*
LABEL1 EQU $00
LABEL2 EQU $02
BSOUT EQU $FFD2

*

*MACRO DEFINITIONS

*

SWAP MAC
LDA 11
STA ]2
<<

*

*SOURCE PART ONE
*
ORG $800 ;PART ONE STARTS HERE
LDA #LABEL1
STA LABEL2
LDA #/LABEL1
STA LABEL2+1

Page 63



Merlin 128 User's Manual The Assembler

LDA LABEL1
JER BSOUT

RTS
Etc.
END NOP ;NOT REQUIRED - EXAMPLE ONLY
SAV "FILE1" :SAVE CODE FROM $800 TO HERE
*
* SOURCE PART TWO
ORG $6000 PART TWO STARTS HERE
LDA #LABEL1
STA LABEL2
LDA #/LABEL1
STA LABEL2+1
LDA LABEL1
JSR BSOUT
RTS
Etc.
END1 NOP ;NOT REQUIRED - EXAMPLE ONLY
SAV "FILE2"
END ;NOT REQUIRED - EXAMPLE ONLY

Therefore, SAV is used to save sections of code to aepadividual binary files during
an assembly. With SAV, you can assemble code thatwialge continuous in memory
but which must be assembled all at once because thensectfer to each other, and may
share labels, data, and/or subroutines.

DSK  (assemble directly to DiSK)

DSK filename
DSK "PROG"
DSK "PROG",9

"DSK filename" will cause Merlin 128 to open a file sged in the opcode and place all
assembled code in that file. It is used atdhet of a source file before any code is
generated. Merlin 128 then writes all the following codedlly to disk. If DSK is
already in effect, the old file will be closed and tiev one begun. This is useful
primarily for extremely large files.

NOTE: Files intended for use with the linking loader maessaved with the DSK pseudo
op; see the REL opcode.

DSK has two basic purposes:

1) It allows you to assemble programs that result incbloede larger than Merlin
128 can normally keep in memory.

Page 64



Merlin 128 User's Manual

The Assembler

2) It allows you to automatically put your object codedak without having to
remember to use the Main Menu's "O" command. Like "SAEK does not
automatically add the ".O" suffix to the saved file name.

The first purpose is the most often used reason fazinglthe DSK opcode.

You should be aware that using DSK will slow assembly Bggmitly. This is
because Merlin 128 will write a sector to disk every time [336s of object code
have been generated. If you don't need a copy of thetande on disk, you
should not use (or use a conditional to defeat) the DggOde.

Here is an example listing of a program that createsseparate object files using

the DSK command:

DSK
ORG
BSOUT EQU

LDX
LOOP1 LDA

BEQ
10 JSR
11 INX
12 BNE
13 DONE1  RTS
14 STRING1 TXT

OCoO~NOOUIDWNPE

16 ORG
17 DSK
18

19 LDX
20 LOOP2 LDA
21 BEQ
22 JSR
23 INX
24 BNE

25 DONE2 RTS
26 STRING2 TXT

* DSK SAMPLE *

"F ILEONE"
$4000
$FFD2

#0
STRING1,X
DONE1

BSOUT

LOOP1
‘This is one’,00

$8000
‘FILETWO”

#0
STRING2,X
DONE2
BSOUT
LOOP2

‘Now it's two’,00

;ASSENBLE 'FILEONE' TO DISK
;'FILEONE' AT $4000 (SYS 4*4096)

YFILETWO’ AT $8000
;/ASSEMBLE ‘FILETWO'’ TO DISK

Page 65



Merlin 128 User's Manual The Assembler

END (END of source file)

END
END [only option for this opcode]

This rarely used or needed pseudo opcode instructs the destargnore the rest of the
source. Labels occurring aftEND will not be recognized.
DUM (DUMmy section)

DUM expression

DUM $1000 [start DUMmmy code at $1000]
DUM LABEL [start code at value of LABEL]
DUM END-START [start at val of END-START]

This starts a section of code that will be examined/dédue of labels but will produce no
object code. The expression must give the desired ORltiscdection. It is possible to re-
ORG such a section using another DUMMY opcode or uSiffs. Note that although

no object code is produced from a dummy section, theotégut of the assembler will
appear as if code is being produced.

DEND (Dummy END)

DEND
DEND [only option for this opcode]

This ends a dummy section and re-establishes the ORG stioltés value it had upon
entry to the dummy section.

DUM and DEND are used most often to create a set efddbat will exist outside of
your actual program, but that your program needs to refer&éhos, the labels and their
values need to be available, but you don't want any coddlgessembled for that
particular part of the listing.

Sample usage of DUM and DEND:

1 ORG $2000
2

3 DUN $63
4

5 FACEXP DFB 0

6 FACHO DFB 0

7 FACMOH DFB 0

8 FACMO DFB 0

9 FACLO DFB 0

10 FACSGN DFB 0,0

Page 66



Merlin 128 User’'s Manual The Assembler

11 ARGEXP DFB 0
12 ARGHO DFB 0
13 ARGMOH DFB 0
14 ARGMO DFB 0
15 ARGLO DFB 0
16 ARGSGN DFB 0,0
17 FACOV DFB 0
18

19 DEND

20

21 START LDA #0
23 STA FACEXP

24 * And so on

Note that no code is generated for lines 3 through 19, blalbés are available to the
program itself, for example, on line 23.

Page 67



Merlin 128 User's Manual The Assembler

FORMATTING PSEUDO OPS

LST ON/OFF (LiSTing control)

LST ON or OFF

LST ON [turn listing on]
LST OFF [turn listing off]
LST [turn listing on, optional]

This controls whether the assembly listing is to bé &ethe screen (or other output
device) or not you may, for example, use this to send opdyrtzon of the assembly
listing to your printer. Any number of LST instructionsynizge in the source. If the LST
condition is OFF at the end of assembly, the synddaétwill not be printed.

The assembler actually only checks the third charattéemperand to see whether or
not it is a space. Therefore, LST will have the saffect as LST ON. The LST directive
will have no effect on the actual generation of obgecte. If the LST condition is OFF,
the object code will be generated much faster, but thecemmended only for debugged
programs.

NOTE: ESCAPE from the keyboard toggles this flag during the skpass, and thus can
be used to manually turn on or off the screen or agurlisting during assembly.

LSTDO ON/OFF (LiST DO OFF areas of code)
LSTDO ON or OFF
LSTDO ON [list the DO OFF areas]
LSTDO OFF [don't list the DO OFF areas]
LSTDO [list the DO OFF areas, optional]

LSTDO ON causes lines in DO OFF areas to be listedglassembly. LSTDO OFF will
not print such lines. The default condition can barsdte PARMS.S file. Macro
definitions are exceptions. These are listed, unless 8iTaOFF condition, even if you
have LSTDO OFF.

Page 68



Merlin 128 User's Manual The Assembler

EXP ON/OFF/ONLY (macro EXPand control)

EXP ON or OFF or ONLY

EXP ON [macro expand on |
EXP OFF [print only macro call]
EXP ONLY [print only generated code]

EXP ON will print an entire macro during the assemiblye OFF condition will print
only the PMC pseudo-op. EXP defaults to ON. This has metedin the object coded
generated. EXP ONLY will cause expansion of the méztbe listing omitting the call
line and end of macro line. (if the macro call lineaisdled, however, it is printed.) This
mode will print out just as if the macro lines weretten out in the source.

PAU (PAUse)

PAU
PAU [only option for this opcode]

On the second pass this causes assembly to pausekeyilsapressed. This can also be
done from the keyboard by pressing the space bar. Thiady fiar debugging.
PAG (new PAGe)

PAG
PAG [only option for this opcode]

This sends a formfeed ($8C) to the printer. It has notefiethe screen listing.

AST  (send a line of ASTerisks)

AST expression
AST 30 [ send 30 asterisks to listing ]
AST NUM [send NUM asterisks]

This sends a number of asterisks (*) to the listing equid value of the operand.
The number format is the usual one (base 10), so thHEL@A%ill send (decimal)

10 asterisks, for example. The number is treated moduleveb® being 256
asterisks.

Page 69



Merlin 128 User's Manual The Assembler

SKP (SKiP lines)
SKP expression
SKP 5 [ skip 5 lines in listing]
SKP LINES [skip “LINES” lines in listing]
This sends "expression" number of carriage returns tastitggl The number format is
the same as in AST.

TR ON/OFF (TRuncate control)

TR ON or OFF
TR ON [limit object code printing]
TR OFF [don't limit object code print]

TR ON or TR (alone) limits object code printout to thim/tes per source line, even if the
line generates more than three. TR OFF resets itno griobject bytes.

CYC (calculate and print CYCle times for code)

CYC

CYC OFF

CYC AVE
CYyC [print opcode cycles & totall
CYC OFF [stop cycle time printing]
CYC AVE [print cycles & average]

This opcode will cause a program cycle count to be printedglagsembly. A second
CYC opcode will cause the accumulated total to go to £2Y& OFF causes it to stop
printing cycles. CYC AVE will average in the cyclestlare undeterminable due to
branches, indexed and indirect addressing.

The cycle times will be printed (or displayed) to tlghtiof the comment field and will
appear similar to any one of the following:

5 ,0326 or 5" ,0326 or 5'',0326

The first number displayed (the 5 in the example apvine cycle count for the current
instruction. The second number displayed is the acctuetutatal of cycles in decimal.
The position of the cycle count can be changed by adfehie file PARMS.S. See the
Technical Information Section for details.

A single quote after the cycle count indicates a posaided cycle, depending on certain
conditions the assembler cannot foresee. If this apmeaa branch

Page 70



Merlin 128 User's Manual The Assembler

instruction then it indicates that one cycle shouladeed if the branch occurs. For non-
branch instructions, the single quote indicates thatgae should be added if a page
boundary is crossed.

A double quote after the cycle count indicates that tberaller has determined that

a branch would be taken and that the branch would erpage boundary. In this
case the extra cycle is displayed and added to the total.

TTL  ‘page header
TTL
TTL "Title Page” [Change page header to "Title Page"]

This lets you change the page header at any point in @mlalss provided the PRTR
command is in effect.

Page 71



Merlin 128 User's Manual The Assembler

STRING DATA PSEUDO OPS
General notes on String Data and String Delimiters

Different delimiters have different effects. Any dhailier less than (in ASCII value) the
single quote (') will produce a string with the high-bits otherwise the high-bits will be

off. For example, the delimiters !"#$%& will produce &rgj in "negative" ASCII, and the
delimiters '( )+? will produce one in "positive” ASClIsuhlly the quote (") and single quote
(") are the delimiters of choice, but other delimifgmsvide the means of inserting a string
containing the quote or single quote as part of the strirgmigle delimiter effects:

"HELLO" [negative ASCII, hi bit set]
HELLO! [negative ASCII, hi bit set]
#HELLO# [negative ASCII, hi bit set]
&HELLO& [negative ASCII, hi bit set]
ENTER "HELLO"! [string with embedded quotes]
'HELLO' [positive ASCII, hi bit clear]
(HELLO( [positive ASCII, hi bit clear]
'ENTER "HELLO™ [string with embedded quotes]

All of the opcodes in this section, except REV, alseptbex data after the string. Any of
the following syntaxes are acceptable:

TXT "string"878D00
DCI "string",878D00
ASC "string",87,8D,00
ASI "STRING",878D00

REV "string"
Command Input Comments Assembles as (hex)
TXT '‘Abc" Commodore ASCII 61 4243
DCI 'Abc" Commodore ASCII 61 42 C3
ASC 'Abc" Standard ASCII 41 6263
ASI '‘Abc" Standard ASCII 41 62 E3
REV 'Abc" Commodore ASCII 43 4261

Page 72



Merlin 128 User's Manual The Assembler

TXT  (define Commodore ASCII TeXT)

TXT d-string
TKF "STRING" [ negative Commodore ASCII string |
TXT 'STRING' [ positive Commodore ASCII string |
TXT "Bye,Bye",8D [ negative with added hex bytes ]

This puts a delimited Commodore ASCII string into the obgecte. The only restriction
on the delimiter is that it does not occur in the stitiegf.

DCI (define Commodore ASCII text - Dextral CharacterInverted)

DCI d-string
DCI "STRING" [ negative Commodore ASCII, except the "G" ]
DCI 'STRING' [ positive Commodore ASCII, except the "G" ]
DCI 'Hello',878D [ positive Commodore with two added hgtes |

This is the same as TXT except that the Commodore AS(21g is put into memory with
the last character having the opposite high bit to thesthe

ASC  (define Standard ASCII text)

ASC d-string
ASC "STRING" [ negative ASCII string ]
ASC 'STRING' [ positive ASCII string |
ASC "Bye,Bye",8D [ negative with added hex bytes ]

This puts a delimited Standard ASCII string into the olgecde. The only restriction on
the delimiter is that it does not occur in the strisglf.

ASI (define Standard ASCII Inverted text)

ASI d-string
ASI "STRING" [ negative ASCII, except for the "G"
ASI 'STRING' [ positive ASCII, except for the "¢"

This is the same as ASC except that the Standard AB@Ig is put into memory with the
last character having the opposite high bit to the ot#Skis to ASC as DCl is to TXT.

Page 73



Merlin 128 User's Manual The Assembler

REV (define REVerse Commodore ASCII text)
REV &string
REV "Insert" [ negative ASCII, reversed in memory |
REV 'Insert’ [ same as above but positive ]

This puts the d-string in memory backwards. Example:
REV "COMMODORE"
gives ERODOMMOC (delimiter choice as in TXT). HEX dahaynot be added after the

string terminator.

STR  (define a Commodore ASCIl STRing with a leading lengtlbyte)

STR d-string
STR "HI" [ negative Commodore ASCII result = 02 CB]C
STR 'HI',8D [ positive Commodore ASCII result 02 48349]

This puts a delimited string into memory with a leadingyte byte. Otherwise it works
the same as the TXT opcode. Note that following HEX byt@sy, are not counted in
the length.

Page 74



Merlin 128 User's Manual The Assembler

DATA AND STORAGE ALLOCATION PSEUDO OPS
DA or DW (Define Address or Define Word)

DA expression or DW expression

DA $FDFO [results: FO FD in memory]
DA 10,$300 [results: OA 00 00 03]
DW LAB1,LAB2 [example of use with labels]

This stores the two-byte value of the operand, usualgddress, in the object code, low-
byte first.

These two pseudo ops also accept multiple data separatechimasqsuch as DA
1,10,100).

DDB  (Define Double-Byte)
DDB expression
DDB $FDED+1 [results: FD EE in memory]
DDB 10,$300 [results: 00 0A 03 00 ]

As above with DA, but places high-byte first. DDB adgmepts multiple data (such as
DDB 1,10,100).

DFB or DB (DeFine Byte or Define Byte)

DFB expression or DB expression

DFB 10 [results: OA in memory |
DFB $10 [results: 10 in memory]
DB >$FDED+2 [results: FD in memory]
DB LAB [example of use with label]

This puts the byte specified by the operand into the objele. ¢dbaccepts several bytes of
data, which must be separated by commas and contain ne.spheestandard number
format is used and arithmetic is done as usual.

The "#" symbol is acceptable but ignored, as is"<". THesymbol may be used to
specify the high-byte of an expression, otherwise tivebgte is always taken. The “>”
symbol should appear as the first character only @xpnession or immediately after #.
That is, the instruction DFB >LAB1-LAB2 will produce th@h-byte of the value of
LAB 1-LAB 2.

Page 75



Merlin 128 User's Manual The Assembler

For example:
DFB $34,100,LAB1-LAB2,%10Il 1,>LAB1-LAB2
is a properly formatted DFB statement which will geteethe object code (hex):
34 64 DE 0B 09
assuming that LAB 1=$81A2 and LAB2=$77C4.
FLO expression (FLOAT)

FLO expression

FLO LABEL [floats 5 bytes in memory]

FLO $FFFF [results: 90 7F FF 00 00 in memory]
FLO 1 [results: 81 00 00 00 00 in memory ]
FLO-1 [results: 81 80 00 00 00 in memory]

This assembles the five byte packed floating point equivalathie expression. If the
expression begins with a minus sign, then the operdif@hied as a signed integer.
Otherwise, it is floated as an unsigned integer.dukhbe noted that Merlin 128 first
computes a 16 bit integer using unsigned arithmetic, whigtersfloated accordingly.
Thus, $FFFF will float as 65535,-1 will float as -1, and #FHmwill float as 1. The file

called "pi.main.s" has examples of the use of this opddde that you can use "FLOAT"
instead of "FLO" since only the first three charactgesexamined, unless used in a macro
name.

HEX (define HEX data)

HEX hex-data
HEX 0102030F [results: 0l 02 03 OF in memory]
HEX FD,ED,CO [results: FD ED CO in memory]

This is an alternative to DFB which allows conveni@sertion of hex data. Unlike all
other cases, the "$" is not required or accepted heesofiérand should consist of hex
numbers having two hex digits (for example, use OF, hoflkey may be separated by
commas or may be adjacent. An error message wijkberated if the operand contains
an odd number of digits or ends in a command, or aédases, contains more than 64
characters.

Page 76



Merlin 128 User's Manual The Assembler

DS (Define Storage)

DS expression
DS expressionl, expression2

DS+t
DS t,expression2
DS 10 [zero out 10 bytes of memory]
DS 10,$80 [put $80 in 10 bytes of memory]
DSt [zero memory to next memory page]
DS 1,$80 [put $80 in memory to next page]

This reserves space for string storage data. It zerdbiswpace if the expression is
positive. DS 10, for example, will set aside 10 bytesforage.

Because DS adjusts the object code pointer, an instndit@DS -1 can be used to back
up the object and address pointers one byte.

The first alternate form of DS, with two expressiond], fill expressionl bytes with the
value of (the low byte of) expression2, provided express®pdsitive. If expression2 is
missing, 0 is used for the fill.

The second alternate form, "DS will fill memory (with 0's) until the next memornyage.
The "DSt,expression2” form does the same but fills using theblgte of expression2.

Notes for REL files and the Linker

The" +" options are intended for use mainly with REL files amdkaslightly differently
with these files. Any "DS" opcode occurring in a REL file will cause the linkeidad
the next file at the first available page boundary, arfdltwith O's or the indicated byte.
Note that, for REL files, the location of this code Im@ effect on its action. To avoid
confusion, you should put this code at the end of a file.

Page 77



Merlin 128 User's Manual The Assembler

USING DATA TABLES IN PROGRAMS

Merlin's various data commands are used by the programnteregosire data bytes (as
opposed to executable program instruction bytes) in memowyse by the program. As an
example, here is a program that prints the sum ofnuvobers squared.

1 *DATATABLE DEMO *

2

3 ORG  $8000

4

5 CLEAR EQU $E544

6 CHROUT EQU $FFD2

7 SCNKEY EQU $FE9F

8 GETIN EQU $FFE4

9

10 START JSR CLEAR

11 LDY #-1 ;START WITH 1 LESS THAN '0' ($FF)
12 PRINT1 INY Y=Y+1

13 LDA DATAlLY :GET CHAR FROM TABLE
14 JSR CHROUT ;PRINT NUMBER TO SE SQUARED
15 LDX #0

16 LOOP1 LDA DATA2,X :LOOP TO PRINT TEXT

17 BEQ PRINT2

18 JSR CHROUT

19 INX

20 BNE LOOP1

21 PRINT?2 LDA DATA3)Y ;PRINT SQUARED VALUE
22 JSR CHROUT

23 LDA  #3$8D

24 JSR CHROUT

25 CPY #303 :THREE LOOPS COMPLETE?
26 BCS WAIT JIF SO WAIT FOR RETURN
27 JMP PRINT1 JIF NOT BEGIN AGAIN

28 WAIT JSR SCNKEY

29 JSR GETIN

30 BEQ WAIT

31 CMP  #$0D ‘WAS RETURN PRESSED?
32 BEQ DONE

33 JMP WAIT

34 DONE RTS

35 DATA1l DFB  #48,49,50,51

36 DATA2 ASC  “SQUARED IS”
37 HEX 00

38 DATA3 DFB  #48,49,52,57

Page 78



Merlin 128 User's Manual The Assembler

MISCELLANEOUS PSEUDO OPS

KBD (define label from KeyBoarD)

label KBD
label KBD d-string
OUTPUT KBD [get value of OUTPUT from keyboard]
OUTPUT KBD "send to printer"  [prompt with the d-stringy the value of OUTPUT]

This allows a label to be equated from the keyboard dursgnasly. Any
expression may be input, including expressions referencingpety defined labels,
however a BAD INPUT error will occur if the input canrms evaluated.

The optional delimited string will be printed on theessr instead of the standard "Give
value for LABEL:" message. A colon is appended to thagtri

LUP (begin a loop)
LUP expression (Loop)
-t (end of LUP)

The LUP pseudo-opcode is used to repeat portions of soeimwedn the LUP and thet--
"expression” number of times. An example of this is:

LUP 4
ASL
-1

which will assemble as:
ASL
ASL
ASL
ASL

and will show that way in the assembly listing, witpeated line numbers.

Perhaps the major use of this is for table buildingadgxample:

A = 0
LUP  $FF

A = JA+1
DPB A

-t

will assemble the table 1, 2, 3, ...,.$FF.

Page 79



Merlin 128 User's Manual The Assembler

The maximum LUP value is $8000 and the LUP opcode will siroplignored if you try
to use more than this.

NOTE: the above use of incrementing variables in order ta lzutbblenill not work if
used within a macro. Program structures such as this mustloded as part of the main
program source.

In a LUP, if the @ character appears in the labelroal it will be increased by the loop
count (thus A,B,C...). Since the loop count is a countgdhese labels will go backwards
(the last label has the A). This makes it possiblabellitems inside a LUP. This will
work in a LUP with a maximum length of 26 counts, otheemyou will get a BAD

LABEL error and possibly some DUPLICATE LABEL errors.

CHK (place CHecKsum in object code)

CHK
CHK [only option for this opcode]

This places a checksum byte into object code at théidooaf the CHK opcode. This is
usually placed at the end of the program and can be usedibprgmgram at runtime to
verify the existence of an accurate image of the prognamemory.

The checksum is calculated with exclusive-or'ing eachessive byte with the running
result. That is byte 1 is EOR'ed with byte 2 and theltrestiin the accumulator. Then that
value is EOR'ed with byte 3 and the process continued batlést byte in memory has
been involved in the calculation. It is not a foolpreabr checking scheme, but is
adequate for most uses. If you were publishing your souttc®lis a magazine, or

loading object code in any situation in which you want Bugessthat a functional copy of
the object code has been loaded, then the use of tblescime pseudo-op is recommended.

The following program segment will confirm the checksainnun time:

1 STARTCHK LDA #<STARTCHK

2 STA PTR

3 LDA #>STARTCHK

4 STA  PTR+1

5 LDY  #$00

6 LDA  #$00

7 PHA . PUSH ZERO ON STACK
8

9 LOOP PLA . RETRIEVE CURRENT OSKEUM
10 ROR (PTR),Y

11 PHA . PUT TENIP BACK

12 INC PTR

13 BNE CHK . WRAP AROUND YET?
14 INC  PTR+1 . YEP




Merlin 128 User's Manual

The Assembler

15 CHK
16

17

18

19

20

21

22 CHKCS
23

24

25

26 REALSTART
27

998 PROGEND
999 CHNSUM
ERR (force ERRor)

ERR expression
ERR texpression

LDA
CMP
BCC
LDA
CMP
BCC
BEQ
PLA
CMP
BNE

?2?7?
??7?

RTS
CHK

ERR  $80-($300)

ERR *-1/$4100
ERR1$5000

PTR+1
#>PROGEND
LOOP

PTR
#<PROGEND
LOOP
LOOP

CHKSUM
ERROR

; SEE IF WE'RE DONE YET...
; NOT YET...

; NOPE

; RETRIEVE CALCULATED VALUE
; COMPARE TO MERLIN'S VALUE
; ERROR HANDLER....
; FALL THROUGH IF O.K.
; REAL PROGRAM STARTS HERE

; END OF FUNCTIONAL PROGRAM
; Merlin 128 CHECKSUM DIRECTIVE

[error if $80 not in $300 ]
[error if PC > $4100]
[error if REL code address exceeds $5000]

"ERR expression” will force an error if the expressi@as a non-zero value and the
message "BREAK IN LINE???" will be printed.

This may be used to ensure your program does not exceedafople, $95FF by adding

the final line:

ERR

*-1/$9600

NOTE: The above example would only alert you thatptwggram is too long, and will not
prevent writing above $9600 during assembly, but there can harm in this, since the
assembler will cease generating object code in sualsgamce. The error occurs only on
the second pass of the assembly and does not abosstralay.

Another available syntax is: ERR ($300)-$4C

which will produce an error on the first pass and ab@erasly if location $300 does not
contain the value $4C.

Page 81



Merlin 128 User's Manual The Assembler

Notes for REL Files and the ERR Pseudo Op

The "ERRtexpression” syntax gives an error on the second p#ss éfddress pointer
reaches expression or beyond. This is equivalent to "ERBxpr", but it when used with
REL files, it instructs the linker to check that the lagte of the current module does not
extend to expression or beyond (expression must beuddsdf the linker finds that the
current moduleloes extend beyond expression, linking will abort with a ragses
Constraint error:" followed by the value of expressiothe ERR opcode. You can see
how this works by trying to link the PI file to an addreserd¥1.C20. Note that the
position of this opcode in a REL file has no bearing smadtion, so that it is best to put it
at the end.

USR  (USeR definable op-code)

USR optional expressions
USR expression [examples depend on definition]

To prevent accidents, USR opcode routines are requiredrtangth the CLD instruction
at location $E00. (Note that this is different from U§HERor purposes of loading, they
may actually begin at $DFF with an RTS.

This is a user definable pseudo-opcode. It does a JSR $SEOG&tien will contain an
RTS after a boot, a BRUN MERLIN or BRUN BOOT ASM. $et up your routine you
should BRUN it from the EXEC command after CATALOGiF should just set up a
JMP at $B00 to the main routine and then RTS.

The following flags and entry points may be used by youtineu

USRADS =$EO00 ;must have a CLD instruction

PUTBYTE = $4C06 ;see below

EVAL = $4C09 ;see below

PASSNUM =%$4 ;contains assembly pass number

ERRCNT = $IF .error count

VALUE = $55 ;value returned by EVAL

OPNDLEN = $2B ;contains combined length of
;operand and comment

NOTFOUND =330 ;see discussion of EVAL

MORKSP = $980 ;contains the operand and

;comment in positive ASCII

Your routine will be called by the USR opcode with A=@;0vand carry set. To direct the
assembler to put a byte in the object code, you shoRAPLETBYTE with the byte in A.

PUTBYTE will preserve Y but will scramble A and X. #turns with the zero flag clear
(so that BNE always branches). On the first passBXOE only adjusts the object and
address pointers, so that the contents of the regaterst important. Yomust call
PUTBYTE thesame number of timeson each pass or

Page 82



Merlin 128 User's Manual The Assembler

the pointers will not be kept correctly and the assgmbbther parts of the program will
be incorrect!

If your routine needs to evaluate the operand, or paftydu can do this by a JSR
EVAL. The X register must point to the first chatercof the portion of the operand you
wish to evaluate (set X=0 to evaluate the expressithreadtart of the operand). On return
from EVAL, X will point to the character following thevaluated expression. The Y
register will be 0, 1, or 2 depending on whether thisadtar is a right parenthesis, a
space, or a comma or end of operand.

Any character not allowed in an expression will causerably to abort with a BAD
OPERAND or other error. If some label in the expigsss not recognized then location
NOTFOUND will be non-zero. On the second pass, howewai will get an

UNKNOWN LABEL error and the rest of your routine wik lignored. On return from
EVAL, the computed value of the expression will be rakion VALUE and VALUE+1,
low byte first. On the first pass this value will bsignificant if NOTFOUND is non-zero.

You may use zero page locations $62-$6F, but should nobdtter locations. Upon
return from your routine (RTS), the USR line will pented (on the second pass).

When you use the USR opcode in a source file, it is teigeclude some sort of check (in
source) that the required routine is in memory. If,eample, your routine contains an
RTS at location $EIO then:

ERR ($E10)-$60

will test that byte and abort assembly if the RTSoisthere. Similarly if you know that
the required routine should assemble exactly two byftdata, then you can (roughly)
check for it with the following code:

LABEL USR  OPERAND
ERR  *-LABEL-2

This will force an error on the second pass if USR dmégproduce exactly two object
bytes.

It is possible to use USR for several different noegiin the same source. For example,
your routine could check the first operand expressioariandex to the desired routine
and act accordingly. Thus “USR 1, whatever” would brandine first routine, “USR
2,stuff" to the second, etc.

Page 83



Merlin 128 User's Manual The Assembler

CONDITIONAL PSEUDO OPS

DO (DO if true)

DO expression

DO O [turn assembly off]

DO 1 [turn it on]

DO LABEL [if LAB EL<>0 then on]
DO LAB1/LAB2 [if LAB I<LAB2 then off]
DO LAB1-LAB2 [if LAB I-LAB2 then off]

This together with ELSE and FIN are the conditionakasbly pseudo ops. If the operand
evaluates to zero, then the assembler will stop gengrmailbject code (until it sees another
conditional). Except for macro names, it will notagnize any labels in such an area of

code. If the operand evaluates to a non-zero numbmar agsembly will proceed as usual.

This is very useful for macros.

It is also useful for sources designed to generate slighiterent code for different
situations. For example, if you are designing a program tmgoROM chip, you would
want one version for the ROM and another with sichffitrences as a RAM version for
debugging purposes. Conditionals can be used to create tfiesentiobject codes

without requiring two sources.

Every DO should be terminated somewhere later by aaRtNeach FIN should be
preceded by a DO. An ELSE should occur only inside such &IDGtructure. DO/FIN
structures may be nested up to eight deep (possibly with Ba8IE's between). If the DO
condition is off (value 0), then assembly will noswene until its corresponding FIN is
encountered, or an ELSE at this level occurs. NestedrIDistructures are valuable for

putting conditionals in macros.

ELSE (ELSE do this)

ELSE
ELSE [only option for this opcode]

This inverts the assembly condition (ON becomes QfeFGIFF becomes ON) for the last
DO.

Page 84



Merlin 128 User’'s Manual The Assembler

IF (IF so then do)

IF char,]var (IF char is the first character ofrjva

IF ()1 [if first char of ]1 is"(" then assemblellbwing code]
IF " JTEMP [if first char is ", assem]
IF"=]1 [alternate use with "="]

This checks to see if char is the leading character akfilacement string for var.
Position is important: the assembler checks thedmstthird characters of the operand for
a match. If a match is found then the following codk e assembled. As with DO, this
must be terminated with a FIN, with optional ELSEs lestw The comma is not
examined, so any character may be used there. For exampl

IF "=]1

could be used to test if the first character of théabée |1 is a double quote (*) or not,
perhaps needed in a macro which could be given eith&s@hl or a hex parameter.

FIN (FINish conditional)

FIN
FIN [only option for this opcode]

This cancels the last DO or IF and continues assemtihthe next highest level of
conditional assembly, or ON if the FIN concluded tt (auter) DO or IF.

EXAMPLE OF THE USE OF CONDITIONAL ASSEMBLY:

* Macro "MOV', moves data from ]1 to ]2: (see also 'localbles”, this Section)

MOV MAC
LDA ]1
STA ]2

* Macro "MOVD", moves data from ]I to ]2 with many alatble
* syntaxes

MOVD MAC

MOV  ]1;12

IF (1 :Syntax MOVD (ADR1),Y;?27?2?
INY

IF (]2 : MOVD (ADR1),Y;(ADR2),Y

Page 85



Merlin 128 User's Manual

The Assembler

MOV 1172
ELSE

MOV 11;]2+1
FIN

ELSE

IF ]2

INY

IF #]1
MOV ]11/$100;]
ELSE

MOV 11+1;)2
FIN

ELSE

IF #]1
MOV ]1/$100;]2+1
ELSE

MOV ]1+1;]2+1
FIN

FIN

FIN

<<<

Call syntaxes supported by MOW):

MOVD ADR1;ADR2

MOVD (ADR1),Y;ADR2
MOVD ADR1; (ADR2) ,Y
MOVD (ADR1),Y; (ADR2),Y
MOVD #ADR1;ADR2
MOVD #ADR1;(ADR2},Y

: MOVD (ADR1),Y;ADR2

;Syntax MOVD ????;(ADR2),Y

. MOVD #ADR1;(ADR2),Y

: MOVD ADRL1;(ADR2),Y

;Syntax MOVD ??7?7?;ADR2
; MOVD #ADR1;ADR2

; MOVD ADR1;ADR2

:MUST close ALL
:conditionals, Count DOs
:& Ifs, deduct FINs. Must

Page 86



Merlin 128 User's Manual The Assembler

MACRO PSEUDO OPS
MAC (begin MACro definition)

Label MAC

This signals the start of a MACRO definition. It mbstlabeled with the macro name.
The name you use is then reserved and cannot be refdreythings other than the PMC
pseudo-op (things like DA NAME will not be accepted if NAMEhe label on MAC).

EOM (<<<)

EOM
<<< (alternate syntax)

This signals the end of the definition of a macro.drbe labeled and used for branches
to the end of a macro, or one of its copies.

PMC (>>>) (macro-name)

PMC macro-name
>>> macro-name (alternate syntax #1)
macro-name (alternate syntax #2)

This instructs the assembler to assemble a copy ofthech macro at the present
location. See the section on MACROS. It may bel&be

VARIABLES

Labels beginning with"]" are regarded\#&iables. They can be redefined as often as you
wish. The designed purpose of variables is for use inasabut they are not confined to
that use.

Forward reference to a variable is impossible (with @bmesults) but the assembler will
assign some value to it. That is, a variable should fieediebefore it is used.

It is possible to use variables for backwards branchinggube same label at numerous
places in the source. This simplifies label namingdoge programs and uses much less
space than the equivalent once-used labels.

Page 87



Merlin 128 User's Manual

The Assembler

For example:

LDY
LDA
BEQ
JSR
INY
BNE
LDX
INX
STA
LDA
BNE

JJLQOP

NOGOOD
]JLOOP

P RPO0O~NOOUITS,WNE

= O

LOCAL LABELS

#0
TABLE,Y
NOGOOD

DOIT

]JLOOP
#-1

;BRANCH TO LINE 2

DATAX
TBL2,X

][JLOOP ;BRANCH TO LINE 8

A local label is any label beginning with a colon. A Ibledel is "attached" to the last
global label and can be referred to by any line fromglaial label to the next global
label. You can then use the same local label in atisgments governed by other global
labels. You can choose to use a meaningless type dldbed such as :1, :2, etc., or you
can use meaningful names such as :LOOP, :EXIT, and.so on

Example of local labels:
START LDY
LDX
LDA
STA
INY

CPY
BNE
LOOP2 LDY
:LOOP LDA
10 STA
11 INY

12 CPY
13 BNE
14 RTS

:LOOP

©oo~NO U~ WNE

#0

#0

(JUNK),Y
(JUNKDEST),Y

;:loop is local to start

#100

:LOOP

#0

(STUFF),Y
(STUFFDEST),Y

:branch back to LOOP in 3

;:loop is now local to lo®p

#100

:LOOP :branch back to LOOP in 9

Some restrictions on use of local labels:

Local labels cannot be used inside macros. You cannotddd@lC, ENT or BXT with a
local label and you cannot EQUate a local label. Trise label in a program cannot be a

local label.

Page 88



Merlin 128 User's Manual The Assembler

Local Labels, Global Labels and Variables

There are three distinct types of labels used by thenasler. Each of these are identified
and treated differently by Merlin.

Global Labels labels not starting with “]” or *”

Local labels labels beginning with”:”

Variables labels beginning with"]"

Note that local labels do not save space in the syrabtd,twhile variables do. Local
labelscan be used for forward and backward branching, while variables ta@ood
programming practice dictates the use of local labelsasch points, variables for
passing data, etc.

Page 89



Merlin 128 User's Manual Macros

MACROS
Why Macros?

Macros represent a shorthand method of programming ltbiasanultiple lines of code to

be generated from a single statement, or macroldadly can be used as a simple means to
eliminate repetitive entry of frequently used programmsags, or they can be used to
generate complex portions of code that the programmgmitaeven understand.

Examples of the first type are presented throughoutthisual and in the “MACRO
LIBRARY.S”. Examples of the second, more complexetypan be found in the "FP
MACROS" file.

Macros literally allow you to write your own languagelahen turn that language into
machine code with just a few lines of source code. Son@eewen take great pride in
how many bytes of source code they can generate witlgle 8/1acro call.

How Does a Macro Work?

A macro is simply a user-named sequence of assenmgydge statements. To create the
macro, you simply indicate the beginning of a definitiothwine macro name in the LABEL
field, followed by the definition of the macro itself.

The macro definition ends with a terminator commarithénopcode field of either "EOM"
(for "End Of Macro"), or the character'<<<".

For example, suppose in your program that locations $06 ande®@sto be incremented by
one, as in this listing:

1 INC INC $06 ; INC LO BYTE

2 BNE DONE

3 INC $07 ; INC HIGH BYTE

4 DONE 7?7?77 ; PROGRAM CONTINUES HERE...

Further, suppose that this is to be done a number ofehtféimes throughout the program.
You could make the operation a subroutine, and JSR toyigwocould write the three lines
of code out at each spot its needed.

However, a macro could be defined to do the same thinghikke

1 INK MAC ; define a macro named INK

2 INC $06

3 BNE DONE

4 INC $07

5 DONE ; NO OPCODE NEEDED

6 <<< ; this signals the end of the macro

Page 90



Merlin 128 User’'s Manual Macros

Now whenever you want to increment bytes $06,07 in your panagyou could just use the
macro call:

100 >>> INK : use the macro "INK"
or:
100 PMC INK : alternate for ">>>"

Now, suppose you notice that there are a number of eliffdryte-pair locations that get
incremented throughout your program. Do you have to writa@arfor each one?
Wouldn't it be nice if there was a way to include aalae within a macro definition? You
could then define the macro in a general way, and whemge it, via a macro call, "fill in
the blanks" left when you defined it Here's a new example:

1 INK MAC : define a macro named INK

2 INC 11 : increment 1st location

3 BNE DONE

4 INC 11+1 ;increment location + 1

5 DONE : NO OPCODE NEEDED

6 <<< ; this signals the end of the macro

This can now be called in a program with the statement:
100 >>> INK,$06

In the assembled object code, this would be assembled as:

100 INC $06

100 BNE DONE

100 INC $07

100 DONE ; NO OPODDE NEEDED

Notice that during the assembly, all the object codergésa within the macro is listed with
the same line number. Don't worry though, the byteseairgylplaced properly in memory,
as will be evidenced by the addresses printed to the ldfe iactual assembly.

Later, if you need to increment locations $0A,0B, thisildalo the trick:
150 >>> INK,$0A

In the assembled object code, this would be assembled as:

150 INC $0A

150 BNE DONE

150 INC $0B

150 DONE ; NO OPCODE NEEDED

Now, let's suppose that you want to use several varialitleis a macro definition. No
problem! Merlin lets you use 8 variables within a macrdahtbugh ]8.

Page 91



Merlin 128 User’'s Manual Macros

Here's another example:

MOVE MAC : define a macro named MOVE
LDA 11 ; load accum with variable ]1
STA]2 ; store accum in location ]2
<< ; this signals the end of the macro

This is a macro that moves a byte (or value) from ooation to another. In this example
the variables are 11 and 12. When you call the MOVE mamuyovide a parameter list
that "fills in" variables ]1 and ]2. What actually happenthat the assembler substitutes the
parameters you provide at assembly time for the variablesorder of substitution is
determined by the parameter's place in the parametantisthe location of the
corresponding variable in the macro definition. Herels MOVE would be called and then
filled in:

MOVE $00;$01
MOVE: macro being called
$00: takes place of ]1 (1st variable)
$01: takes place of ]2 (2nd variable)

then, the macro will be "expanded" into assembly code,

>>> MOVE,$0D;$01
LDA $00 {$00 in place of ~1}
STA $01 {$01 in place of 121

It is very important to realize thahything used in the parameter list will be substituted for
the variables. For example:

>>> MOVE,#"A";,DATA

would result in the following:

>>> MOVE, #'A",DATA
LDA #'A"
STA DATA

You can get even fancier if you like:

>>> MOVE, #"'A"; (STRING),Y
LDA A
STA (STRING),Y

As illustrated, the substitution of the user supplied patara for the variables is quite
literal. It is quite possible to get into trouble this vedso, but Merlin will inform you, via an
error message, if you get too carried away.

One common problem encountered is forgetting the diféeré&etween immediate mode
numbers andaddresses.

Page 92



Merlin 128 User's Manual Macros

Thefollowing two macro calls will do quite different things:

>>> MOVE,IO;20
>>> MOVE,#10:#20

The first stores the contents of memory locationdeifnal) into memory location 20
(decimal). The second macro call will attempt to stbesmnumber 10 (decimal) in the
number 20! What has happened here is that an illegal addressidg was attempted. The
second macro call would be expanded into something likéitltisvere possible):

>>> MOVE,#10;#20 ;call the MOVE macro
LDA #10 ;nothing wrong here
STA  #20 ;woops! can't do this!

*** BAD ADDRESS MODE *** ;Merlin will let you know!

In order to use the macros provided with Merlin, or tdesyour own, study the macro in
guestion and try to visualize how the required parameteutdvbe substituted. With a little
time and effort you'll be using them like a Pro!

MORE ABOUT SPECIAL VARIABLES
Bight variables, named ]1 through 18, are predefined andesmigned for convenience in
macros. These can be used in any macro call. Macrosecealled one of three ways, and
this will affect the syntax of accompanying variable esgions.
In the first two methods,
>>> NAME,exprl;expr2;expr3...
and
PMC  NAME,exprl;expr2;expr3...

will assign the value of exprl to the variable ]1, wiagxpr2 to ]2, and so on. An example
of this usage is: SWAP,$6;$7; TEMP

MACRO DEFINITION RESULTANT CODE EXAMPLE
TEMP EQU  $10
SWAP MAC

LDA 1 LDA  $06

STA 3 STA TEMP

LDA ]2 LDA  $07

STA ]I STA  $06

LDA |3 LDA TEMP

STA |2 STA  $07

<<

>>>  SWAP,$6;$7; TEMP

Page 93



Merlin 128 User's Manual Macros

>>> SWAP,$1000;$6;TEMP  (2nd macro call with new argument)

This program segment swaps the contents of locationt®alwét of $7, using TEMP as a
scratch depository, then swaps the contents of $6thathof $1000.

If, as above, some of the special variables are wusde:iMacro definition, then values for
them must be specified in the PMC (or >>>) statemarthe assembly listing, the special
variables will be replaced by their corresponding e)qioes.

The number of values must match the number of variabéssinghe macro definition. A
BAD VARIABLE error will be generated if the number ofluas is less than the number of
variables used. No error message will be generated, howtvere are more values than
variables.

Note that in giving the parameter list, the Macro ifetd by a comma, and then each
parameter separated with a semicolon. The assemblercedpt some other characters in
place of the comma between the macro name and piessxons in a macro call (see the
following examples). You may use any of these charscter

./,- (and the space character

The semicolons are required, however, between the expressions, and no extra sp&ces a
allowed.

Macro names may also be put in the opcode column, without using the PMC or >>>, with
the following restriction: The macro name cannot leeséaime as any regular opcode or
pseudo opcode, such as LDA, STA, ORG, EXP, etc. Alsanhot begin with the letters
DEND or POPD.

Note that the PMC or >>> syntax is not subject to tssriction.

Macros will accept literal data. Thus the assembldragigept the following type of macro
call:

MACRO DEFINITION

MUV  MAC
LDA ]1
STA ]2
<

>>> MUV . (PNTR),Y;DEST
>>> MUV . #3:FLAG,X

Page 94



Merlin 128 User’'s Manual Macros

with the resultant code from the above two macre dading:

>>> MUV. (PNTR),Y;DEST :macro call

LDA (PNTR),Y ;Substitute first parm.

STA DEST ;Substitute second parm.
and,

>>> MUV.#3;FLAG,X :macro call

LDA #3 ;Substitute first parm.

STA FLAG,X ;Substitute second parm.

It will also accept:

MACRO DEFINITION RESULTANT CODE EXAMPLE
PRINT MAC PRINT. "Example"

JSR  SENDMSC JER  SENDMSG

AEC 1 AEC  "Example"

BRK BRK

<L

Some additional examples of the PRINT macro call:

>>> PRINT. "quote"!
>>> PRINT. 'This is an exarpie'
>>> PRINT. "So's this, understand?"

LIMITATION: If such strings contain spaces or semicolons, they be delimited by
guotes (single or double). Also, literals such as >>>WHATmust have the final
delimiter. (This is only true in macro calls or VAR t&ti@ents, but it is good practice in all
cases.)

MORE ABOUT DEFINING A MACRO
A macro definition begins with the line:
Name MAC  (no operand)
with Name in the label field. Its definition is temated by the pseudo-op EOM or <<<. The

label you use as Name cannot be referenced by anythinglodinest valid Macro call:
NAME, PMC NAME or >>> NAME.

Forward reference to a macro definition is not possdate would result in a NOT
MACRO error message. That is, the macro must be adebiaore it is called by
NAME, PMC or >>>.

The conditionals DO, IF, ELSE and FIN may be usethiwia macro.

Page 95



Merlin 128 User's Manual Macros

Labels inside macros are updated each time the macro NRME, or >>> NAME is
encountered.

Error messages generated by errors in macros oftenagsennbly, because of possibly
harmful effectsimportant: Such messages will usually indicate the line numbeneof t
macro call rather than the line inside the macro wtiererror occurred. Thus, if you get an
error on a line in which a macro has been used, youdshback the macro definition itself
for the offending statement.

Nested Macros
Macros may be nested to a depth ofHére is an example of a nested macro in which the

definition itself is nested. (This can only be done wheth definitions end at the same
place.)

TROB MAC
>>>  TR]1+1;]2+1
TR MAC
LDA 11
STAJ2

In this example >>> TR.LOC;DEST will assemble as:

LDA LOC
STA  DEST

and >>> TRDB.LOC;DEST will assemble as:

LDA LOC+1
STA DEST+1
LDA LOC
STA DEST

A more common form of nesting is illustrated by these macro definitions:

TABMAP  EQU $354

POKE MAC
LDA  #]2
STAJL
<<

HTAB MAC

>>> POKE.TABMAP+] 1;]2
The HTAB macro could then be used like this:

HTAB 2:;20 :set tab #2 to column 20 decimal

Page 96



Merlin 128 User’'s Manual Macros

andwould generate the following code:
LDA #20 ;]2 in POKE macro

STA  TABMAP+2 ;11 in POKE macro, 1st parm.
; in H~AB macro

Macro Libraries and the USE Pseudo Op
There are a number of macro libraries on the Melisk. These libraries are examples of
how one could set up a library of often used macros. dtneirements for a file to be
considered a macro library are:

1)  Only Macro definitions and label definitions exist e ffile,

2)  The file is a text file,

3) The file must be accessible at assembly timmiit be on an available disk drive).
The macro libraries included with Merlin include:

Macro Library functions

MACRO LIBRARY.S Often-used macros for general use

FP MACROS Floating point math routines

PT.MACROS Macros used for the “PI1” linker demonstratio
programs

Any of these macro libraries may be included in an assebybsimply including a USE
pseudo op with the appropriate library name. There ismotlh the number of libraries that
may be in memory at any one time, except for availat@denory space. See the
documentation on the USE pseudo op for a discussiots oise in a program.

Page 97



Merlin 128 User's Manual The Linker

THE LINKER
Why a Linker?

The linking facilities built into Merlin offer a numbef advantages over assemblers without
this capability:

1) Extremely large programs may be assembled in onetaperaver 41000 bytes long,

2) Large programs may be assembled much more quickiyaxabrresponding decrease in
development time,

3) Libraries of subroutines (for disk access, graph@ges/modem/printer drivers, etc.)
may be developed and linked to any Merlin 128 program,

4) Programs may be quickly re-assembled to run at angssldr

With a linker, you can write portions of code that pari specific tasks, such as general
disk 1/0 handler, and perform whatever testing and debuggegiuired. When the code is
correct, it is assembled as a REL file and placed diska Whenever you need to write a
program that uses disk 1/0 you won't have to re-writeeeassemble the disk 1/0O portion of
your new program. Just link your general disk 1/0 handlgoto new program and away
you go. This technique can be used for a variety of oftesh sideroutines.

Wouldn't a PUT file or Macro USES library serve thens purpose? A PUT file comes the
closest to duplicating the utility of REL files and tiker, but there are a few rather large
drawbacks for certain programs. First, using a PUTtdiladd a general purpose subroutine
would result in much slower assembly. Second, any lalbelitiens contained in the PUT
file would be global within the entire program. With BIRfile, only labels defined as

ENTry in the REL file (and EXTernal in the currengjilwould be shared by both programs.
There is no chance for duplicate label errors whergusia linker. Consider the following
simple example:

A REL file has been assembled that drives a plofteere are six entry points into the
driver: PENUP, PENDOWN, NORTH, SOUTH, EAST, WEST. fuather illustrate the
value of a linker, assume the driver was written byeandl who has moved 2000 miles from
you. Your job is to write a simple program to draw a&.bthe code would look something
like this:

1 REL ;RELOCATABLE CODE
2 PENUP EXT ;EXTERNAL LABEL

3 PENDOWN  EXT ;ANOTHER ONE

4 NORTH EXT

5 SOUTH EXT

6 EAST EXT

Page 98



Merlin 128 User's Manual The Linker

7 NEST EXT

8

9 BOX LDY #00 ; INITIALIZE Y

10 JSR PENDOWN ; GET READY TO DRAW
11 :LOOP JSR NORTH ; MOVE UP

12 INY ; INC COUNTER

13 CPY #100 ; 100 MOVES YET?

14 BNE :LOOP ; NOTICE LOCAL LABEL

15 LDY #00  INIT Y AGAIN

16 :LOOP2 JSR EAST ; NOW MOVE TO RIGHT
17 INY

18 CPY #100

19 BNE :LOOP2 ; FINISH MOVING RIGHT

20 * YOU GET THE IDEA, DO SOUTH, THEN WEST, AND DONE

This simple sample program illustrates some of the poVBELocatable, linked files.
Your program doesn't have to concern itself with confletsveen its labels and the REL
files labels, you don't concern yourself with the taraof the EXTernal labels, your
program listing is only 30 to 40 lines and it is capable of adrgw box on a plotter!

Let's look at another example that illustrates pdirasd 2 above. This time you are writing
a data base program. You have broken the program dowé mtmlules, all of which are
REL files:

1) User interface

2) ISAM file system

3) Sort subsystem

4) Search subsystem

5) Report generator

6) Memory management subsystem

You would first design and write the user interface fauryprogram. This would then be
assembled and stored as a REL file. Next, the ISAMs§igem is written and de-bugged.
You would then link the two modules together to see hay torked together. Next, you
would complete the Sort, the Search, and all the Irefict, by using REL files, and
documenting the ENTry points and their conditions, difedint people could be working
simultaneously on the same project and need no morednenanother than the ENT labels!

To illustrate point 2, assume that the six modulesati@ded as PUT files and that the
resulting program was 40k bytes long. The time it would talessemble and cross
reference such a large program would be measured in hodag$ Changing one byte in
the source code would require a complete re-assembly quitkaa wait! By assembling
each section independently as REL files and then lintkiam, the one byte change would
require assembly of only one module in the 40k prograrshdnt, with REL files and a
linker, changes to large programs can be made quickly &orkwetly, greatly speeding the
program development process.

Page 99



Merlin 128 User's Manual The Linker

About the Linker Documentation

There are three pseudo opcodes that deal directly viattetable modules and the linking
process. These are:

REL - Informs the assembler to generate relocatalelg fil
EXT - Defines a label as external to the current file
ENT - Defines a label in the current file as accesdiblather REL files.

There are two other pseudo opcodes that behave differemely used in a REL file,
relative to a normal file. These are:

DS - Define Storage opcode,
ERR- Force an ERRor opcode.

Each of these five pseudo opcodes will be defined or reddfirtags section as they pertain
to REL files. Also, an Editor command unique to RELsfleill be defined: LINK.

In order to use the Linker, the files to be linked nhesspecified. The linker uses a file
containing the names of the files to be linked for phigpose.

The Linker documentation will make no additional attemptsducate the user as to when
(or when not) to use REL files.

PSEUDO OPCODES FOR USE WITH RELOCATABLE
CODE FILES

REL ( generate a RELocatable code file )
REL [only options for this opcode]

This opcode instructs the assembler to generate a rddtecatale file for subsequent use
with the relocating linker.

This must occur prior to definition of any labels. You will geBAD "REL" error if not.
REL files are incompatible with the SAV pseudo op and WithEXEC mode's object
code save commando get an object file to the disk you must use the DSK opcode for
direct assembly to disk.

There are additional illegal opcodes and procedures thabamally allowed with
standard files, but not with REL files. For example CRG at the start of the code is not
allowed. In addition, multiplication, division or logitoperations can be applied to
absolute expressions but not to relative ones.

Page 100



Merlin 128 User's Manual The Linker

Examples of absolute expressions are:

- An EQUate to an explicit address,
-The difference between two relative labels,
-Labels defined in DUMMY code sections.

Examples of relative expressions that are not allowed a

-Ordinary labels,
-Expressions that utilize the PC, like: LABEL = *.

The starting address of an REL file, supplied by the adsenid $8000. Note that this
address is a fictional address, since it will laterhmmged by the linker. It is for this
reason that no ORG opcode is allowed.

There are some restrictions involving use of EXTernalfaln operand expressions. No
operand can contain more than one external. For opeoéias following form:

#>expression or >expression

where the expression contains an external, the \dlthee expression must be within 7
bytes of the external labels value. For example:

LDA #>EXTERNAL+8 [illegal expression]
DFB >EXTERNAL-1 [legal expression]

Object files generated with the REL opcode are givetfiiltheype USR.

EXT (define a label EXTernal to the current REL module)

label EXT
PRINT EXT [define label PRINT as EXT]

This defines the label in the label column as an extéabal. Any external label must be
defined as an ENTry label in its own REL module, othesitisvill not be reconciled by
the linker (the label would not have been found in dthe other linked modules). The
EXTernal and ENTry label concepts are what allows Rieldules to communicate and
use each other as subroutines, etc.

The value of the label is set to $8000 and will be resbby the linker. In the symbol
table listing, the value of an external will be $8000 plesetkternal reference number
($0-$FE) and the symbol will be flagged with an “X”.

Page 101



Merlin 128 User's Manual The Linker

ENT (define a label as an ENTry label in a REL code module)

label ENT
PRINT ENT [define label PRINT as ENTry]

This defines the label in the label column as an ENTogllalr his means that the label can
be referred to as an external label. This facilitgpvas other REL modules to use the label
as if it were part of the current REL module. If aglais meant to be made available to
other REL modules it must be defined with the ENT opcotteerwise, other modules
wouldn't know it existed and the linker would not be ableetmncile it.

The following example of a segment of a REL modulé Muistrate the use of this
opcode:

21 STA  POINTER ;Some meaningless code

22 INC POINTER ;for our example

23 BNE SWAP :CAN BE USED AS NORMAL
24 JMP CONTINUE

25 SWAP ENT 'MUST BE DEFINED IN THE
26 LDA POINTER ;:CODE PORTION OF THE
27 STA PTR :MODULE AND NOT USED
28 LDA POINTER +l :AS AN EQUated label

29 STA PTR+

30 *etc.

Note that the label SWAP is associated with the codiaar26 and that the label may be
used just like any other label in a program. It can becheshto, jumped to, used as a
subroutine, etc.

ENT labels will be flagged in the symbol table listingh an "E."

DS (Define Storage)

DSt

DS texpression

DSt [start next module, fill memory with zeros to next pageak]
DS1t,1 [start next module, fill memory with the valuéolnext page]

When this opcode is found in an REL file it causes thieli to load the next file in the
"linker name file" at the first available page boundarg & fill memory either with zeros
or with the value specified by the expression. This opsbdeld be placed at the end of
your source file.

Page 102



Merlin 128 User's Manual The Linker

ERR (force an ERRor)

ERR texpression
ERR1$4200 [error if current code passes address $4200]

This opcode wilinstruct the linker to check that the last byte of theemirfile does not

extend to expression” or beyond. Note that the expressist be absolute and not a
relative expression.

If the linker finds that this is not the case, linking waitiort with the message:
CONSTRAINT ERROR;:, followed by the value of the expi@ssn the ERR opcode.

You can see how this works by trying to link the PI fitretbe Merlin disk to an address
greater than $1C20.

Note that the position of this opcode in a REL file hasearing on its action. It is
recommended that it be put at the end of a file.

LINK (LINK REL files, this is an editor command)

LINK adrs "filename'
LINK $1000 "NAMES" [link files in NAMES]

This editor command invokes the linking loader. For exanglppose you want to link
the object files whose names are held in a "linker nideiealled NAMES. Suppose the
start address desired for the linked program is $1000. Thenguold type: LINK $1000
“‘NAMES” <RETURN>. (The final quote mark in the nameojstional and you can use

other delimiters such as “” or”;".). The specified $taddress has no effect on the space
available to the linker.

Note that this command is only accepted if there is neotsource file in memory, since
the linker would destroy it.

Linker Name Files

The linker name file is just a text file containing tHe hiames of the REL object modules
you want linked. It should be written with the Merlintediand written to the disk with
the “W” EXEC command.

Thus, if you want to link the object files named MYPRSGART, MYPROG.MID, and
LIB.ROUTINE,9 you would create a text file with thesees:

MYPROC.START
MYPROG.MID
LIB.ROUTINE, 9

Page 103



Merlin 128 User’'s Manual The Linker

Then you would write this to disk with the "W" command unighe filename (for
example) MYPROG.NAMES. (Use any filename you wish herie not required to call it
NAMES.). Then you would link these files with a start mdg of $4000 by typing NEW
and then issuing the Editor command: LINK $4000 "MYPROG.NAVIE

The names file may contain empty lines and commenrd Brerting with "*".

The linker will not save the object file it createsinstead, it sets up the object file
pointers for the Main Menu Object command (*O”) and metuyou directly to Main Menu
upon the completion of the linking process.

The Linking Process

Various error messages may be sent during the linkingepsasee the ERRORS section
of this manual for more information). If a error occimgolving the file loading, then that
error message will be seen and linking will abort. & énror FILE TYPE MISMATCH
occurs after the message "Externals:" has been primeedttis being sent by the linker
and means that the file structure of one of the ascorrect and the linking cannot be
done.

The message MEMORY IN USE may occur for two reaskitker the object program is
too large to accept (the total object size of the linkedcliinnot exceed about $A100) or
the linking dictionary has exceeded its allotted space ($ROQf). Each of these
possibilities is exceedingly remote.

Atfter all files have been loaded, the externals ellresolved. Each external label
referenced will be printed to the screen and will béceteéd to have been resolved or not
resolved. An indication is also given if an exterredérence corresponds to duplicate
entry symbols. With both of these errors the addrefisedfield (one or two bytes)
effected is printed. This is the address the field willkhaten the final code is
DLOADed.

If you use the TRON command prior to the LINK commandy oim¢ errors will be
printed in the external list (NOT RESOLVED and DUPLITA errors).

This listing may be stopped at any point using the spac& barspace bar may also be
used to single step through the list. If you press theedpaicwhile the files are loading
then the linker will pause right after resolving the festernal reference.

The list can be sent to a printer by using the PRTR camdrprior to the LINK command.
At the end, the total number of errors (external exfees not resolved and references to
duplicate entry symbols) will be printed. After pressirngeg you will be sent to the

MAIN Menu and can save the linked object file with theesbsave command, using any
filename you please. You can also return to the editdruse the GET command to move
the linked code to RAMO.

Page 104



Merlin 128 User's Manual Technical Informaton

TECHNICAL INFORMATION

The source is placed at START OF SOURCE when loadgdrdless of its original
address.

The important pointers are:

START OF SOURCE in  $C,$D (set to $7000 unless changed)
HIMEM in  $E,$F ($FFO00, don't change)
END OF SOURCE in $10,$11

GENERAL INFORMATION

When you exit to BASIC or to the monitor, these pointgessaved. They are restored upon
re-entry to Merlin 128.

Re-entry after exit to BASIC is made by the "SYS 2048" camunor by the F4 function
key.

If during assembly the object code exceeds usable RAMthigecode will not be written to
memory, but assembly will appear to proceed as normatsodtput sent to the screen or
printer. The only clue that this has happened, if not titeal, is that the OBJECT CODE
SAVE command at EXEC level is disabled in this evener&hs ordinarily a 23K space for
object code, which can be changed with the OBJ opcode.

SYMBOL TABLE

The symbol table is printed after assembly unless LSH &5 been invoked. It is displayed
first sorted alphabetically and then sorted numdyic&he symbol table can be aborted at
any time by pressing RUN/STOP. Stopping it in this mannihave no ill effect on the
object code which was generated.

The symbol table is flagged as follows:

MD = Macro Definition

label defined within a Macro

Variable (symbols starting with"]")

A symbol that was defined but never referenced
External symbol

Entry symbol

mXv<=
nmonogonon

(local labels are not shown in the symbol table Igsdin

Page 105



Merlin 128 User's Manual Technical Informaton

The symbol printout uses the first tab to determinesgfaee to allocate to each symbol.

Thus, if you change the default tabs to enable moré¢ dplaee, the symbol table printout
will change also. Note that you may have to change ttanader for number of symbols
per line in the table.

CONFIGURATION

The configuration registers $D101-$D504 are set up as shoawv.bEhese should not be
changed, or reset to values shown. Return to MAIN MENUB2000 or $2500 will reset
them.

$D501: %00000000 (ROM)

$D502: %01111111 (RAM1)

$D503: %00111111 (RAMO)

$D504: %00001110 (RAMHALF)

RAM HALF leaves RAM below $C000, ROM and 1/0O above. THEMRHALF
configuration is the one usually in effect at any giveret

Merlin 128 configuration data is stored in a file the PARMS8l®©which is loaded at boot.
To change any of these values, load the source file M?8Rmake the desired changes,
then reassemble it.

Use the 'S' command to save the source code as PAR#Sh&)'O' command to save the
object code as PARMS. Merlin 128 will add the appropriatéxsu§ or .O).

Page 106



Merlin 128 User's Manual Technical Informaton

CONTENTS OF PARMS

1 *

2* PARMS for Merlin-128

3 *

4

5 SRC = $7000 ;Source address (=> $7000)
6 HIM = $FFO0 ;Don't change

7

8 ORG $2506 ;Do not change the org

9

10 SPEED DFB 0 ;Printer output speed (RS232)
11 ERRFLG DFB $80 ;0 to defeat keywait on error
12

13 PNTSAV DA SRC ;Don't change these

14 DA HIM P

15 DA SRC P

16

17 DFB #han ;Editors wild card (cmd mode)
18

19 DFB 4 ;Number of symbols/line in
20 ; symbol table printout

21

22 CYCHORIZ DFB 80-8 ;Column for CYC printing

23

24 LSTDOFLG DFB 0 ;$FF to not list DO OFF areas
25

26 DEFBKGND DFB 0 ;Foreground/background color
27 CHRCOLOR DFB 149 ;Char color

28

29 *  For DEFBKGND use the following table:

30 *

31 *0 - black 8 - red

32 *1 - medium grey 9 - light red

33 *2 - blue 10 - orange

34 *3 - light grey 11 - purple

35 *4 - green 12 - brown

36 *5 - light green 13 - yellow

37 *6 - dark grey 14 - light grey

38 *7 - cyan 15 - white

39 *

40 *  For CHRCOLOR use the character codes for col@s, i.

41 *

42 *5 = white 151 = darkcyan

43 *28 = red 152 = grey

44 *30 = green 153 = light green

45 *31 =  blue 154 = light blue

46 *129 = dark purple 155 =  light grey

47 *144 = black 156 = purple

48 *149 = darkyellow 158 = light cyan

49 *150 = light red 159 = cyan

50

51 RS232 DFB %00000110 ;Control reg. for RS232

52 DFB %00010000 ;Command reg.

53 DFB 0 ;Baud low (if used)

Page 107



Merlin 128 User's Manual Technical Informaton

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

DFB 0 ;Baud hi
RPTDFLT DFB $80 ;Repeat key default
NUMLINES DFB 60 ;Printer lines/page

PAGSKIP DFB 0 ;# of lines skipped at perf
; will formfeed if O.
;If printer does not recognize
; formfeed then usually you
; should put a 7 here.

NUNCHRS DFB 80 ;Printer width

PRNTRCR DFB $80 ;Put a 0 here if your printer
; will not do an automatic CR
; after the # of chars in
; NUMCHRS (eg. if the printer
; width is more than NUNCHRS).
;This is so that output can
; keep an accurate line count.
;For almost all printers you
; should use $80 here - unless
; you use a NUMCHRS less than
; the actual printer width.

LFD DFB 0 ;Line feed default 0=no,$D=yes
CNUMSK DFB 0 ;UC/LC conversion for printer
; Put a 32=%$20 here to convert

; Ic/uc for printer output.

ECHO DFB $61 ;$61=echo printer output
; 0 = no echo (to screen)

*  Editor and assembler tabs (use 5 more than column) :

DFLTABS DFB 14 ;Opcode column (+5)
DFB 20 ;Operand column (+5)
DFB 31 ;Comment column (+5)
ERR *-$2523 ;That's it folks

Page 108



Merlin 128 User's Manual

Technical Informaton

Merlin 128 Memory Map

Bank 0 Bank 1
$FFFF p $FFFF
$FF00 h ROM & Interrupt Code sFFo0 b ROM & Interrupt Code
ject cod ink
Source Files Object code or Linker tables
. $SA000 h
$7000 p Symbol table,
or Clipboard,
or Linker tables
$2000 L soenananionn etk Common RAM boundary SPUURURUUPRPRPRIRTUHIFTOIRTRPRRIIRIL A
Merlin 128
$1C00 k
Unused
(reserved for USER routines,
etc. Portions of $1200-12FF
are used by kernel
$1200 interrupt routines)
5
$1100 Buffer for DSK Sourceror usage
Function key usage
$1600 p.
USR Opcode routines
$EOC h
RS232 buffers &
Merlin's printer usage USER routines can use
$C00 B this space by banking in
< | Editor's USER routines the "common” arca
$B00 p
Misc. Usage
$800 h
$0 Usual Stuff $0

Page 109



Merlin 128 User’s Manual Error Messages

ERROR MESSAGES
BAD ADDRESS MODE

The addressing mode is not a valid 6510 instruction; for ex@dR (LABEL) or LDX
(LABEL),Y.

BAD BRANCH

A branch (BEQ, BCC, etc.) to an address that is otdraje, i.e. further away than +127
bytes.

NOTE: Most errors will throw off the assembler's aadr calculations. Bad branch
errors should be ignored until previous errors have beahwlih.

BAD EXTERNAL

EXT or ENT in a macro or an equate of a label to gression containing an external,
or a branch to an external (use JMP).

BAD INPUT

This results from either no input (RETURN alone) olirgput exceeding 37 characters
in answer to the KBD opcodes request for the valuelaibeal.

BAD LABEL
This is caused by an unlabeled EQU, MAC, ENT or EXTballghat is too long
(greater than 13 characters) or one containing illegaéctexrs (a label must begin with
a character at least as large in ASCII value asdlm@and may not contain any
characters less than the digit zero).

BAD OBJ
An OBJ after code start or OBJ not within $4000 to $FEEO.

BAD OPCODE

Occurs when the opcode is not valid (perhaps misspellédi mpcode is in the label
column.

BAD ORG

Results from an ORG at the start of a REL file.

Page 110



Merlin 128 User's Manual Error Messages

BAD "PUT"

This is caused by a PUT inside a macro or by a PUT insiotdher PUT file.
BAD REL

A REL opcode occurs after some labels have been defined.
BAD “SAV”

This is caused by a SAV inside a macro or a SAV afteuldipte OBJ after the last
SAV.

BAD VARIABLE
Occurs when you don't pass the number of variables tacamthat it expects. It can
also occur for a syntax error in a string passed to aanaciable, such as a literal
without the final quote.

BREAK

This message is caused by the ERR opcode when the expriestsie operand is found
to be non-zero.

DICTIONARY FULL
Overflow of the relocation dictionary in a REL file.

DUPLICATE SYMBOL
On the first pass, the assembler finds two identic&ltab

ILLEGAL CHAR IN OPERAND
A non-math character occurs in the operand wheressenaler is expecting a math
operator. This usually occurs in macro calls with impragyatax resulting from the
textual substitution.

ILLEGAL FORWARD REFERENCE
A label equated to a zero page address after it hasusedn This also occurs when an
unknown (on the first pass) label is used for some thimggssmust be able to calculate

the value on the first pass (e.g. ORG< OBJ DUM).db @lccurs if a label is used before
it is defined in a DUM section on zero page.

Page 111



Merlin 128 User's Manual Error Messages

ILLEGAL RELATIVE ADRS
In REL mode a multiplication, division or logical opgoa occurs in a relative
expression. This also occurs for an operand of the typrp#or a DFB >expr when the
expr contains an external and the offset of the vafuke expr from that of the external
exceeds 7.

MEMORY FULL

This is usually caused by one of two conditions: Source tomdirge or symbol table
too large. See "Special Note" at the end of this section.

NESTING ERROR

Macros nested more than 15 deep or conditionals nestedimaor8 deep will generate
this error.

NOT MACRO

Forward reference to a MACRO, or reference by PMC orte>e label that is not a
MACRO.

OUT OF MEMORY

An attempt has been made to paste more text fromigtmald than will fit in the
current source listing, or to paste from an empty olgstd (such as after an assembly).

RANGE ERROR

Results when using GET to move a program with an ORGctidticts with Merlin 128
or a source file in memory.

TWO EXTERNALS
Two or more externals in an operand expression.

UNKNOWN LABEL
Your program refers to a label that has not been defiftad.also occurs if you try to
reference a MACRO definition by anything other than PMCG>>. It can also occur if
the referenced label is in an area with conditiosaéably OFF. The latter will not
happen with a MACRO definition.

256 EXTERNALS

The file has more than 2&&ternals.

Page 112



Merlin 128 User’s Manual Error Messages

MEMORY FULL Errors

There are three common causes for the MEMORY FUkbarenessage. They are as
follows:

MEMORY FULL IN LINE: xx . Generated during assembly.

CAUSE #1: Too many symbols have been placed into the sytaiflel causing it to
exceed available space.

REMEDY: Make the symbol table larger by setting OBJ to $BfEd use DSK to
assemble directly to disk.

CAUSE #2: If the combined size of the source file and & Rg is too large.
REMEDY: Split either file into two smaller files.

ERR:MEMORY FULL. Generated immediately after you type in one line tonyma

CAUSE: The source code is too large and has exceededlded AM.
REMEDY: Break the source file up into smaller sectiand bring them in when
necessary by using the "PUT" pseudo-op.

ERROR MESSAGE: None, but no object code will be generated (therebeilho
OBJECT information displayed on the MAIN menu).

CAUSE: Object code generated from an assembly would haeeded the available
16K space.
REMEDY: Set OBJ to an address less than its $8000 defauste DSK.

GENERAL NOTE: When an error occurs that aborts assembly, the dineaming the

error is printed to the screen. This may not haveséimee form as it has in the source, since
it shows any textual substitutions that may have occueeduse of macro expansion. If it
is in a macro call, the line number will be thatlué tall line and not of the line in the macro
(which is unknown to the assembler).

Page 113



Merlin 128 User's Manual Sourceror

SOURCEROR

INTRODUCTION
SOURCEROR is a sophisticated and easy to use co-redidaasembler designed to create
Merlin 128 source files out of binary programs, usually in #e@naf minutes.
Using SOURCEROR
To use SOURCEROR, follow these steps:
1. Use the Main Menu 'G' command to run SOURCEROR
2. Press 'E'to enter the Editor.
3. From the Immediate mode prompt (3), type:

USER (RETURN)

There must be no source in memory when the USER condhisassued. If there is, the
USER command will be ignored, and you will not be abledntinue the disassembly.

4. If there is no source in memory, the following pronvpk appear:
Do you want an object file loaded? (Y/N):
5. If you type 'N', the following prompt appears:

If the present location of the program to be disasseunislits original location, hit
RETURN. If not, give PRESENT location:

After pressing RETURN or entering the PRESENT locatibe,following prompt
appears:

In disassembling, use the ORIGINAL location. Pleaseifp:
Enter the ORIGINAL location and press RETURN. Skiptéoni 10.

6. If you pressed 'Y' to the 'Do you want an objectléisaled?' prompt, the following
appears:

Name of file:

7 Type the complete filename and press RETURN.

Page 114



Merlin 128 User's Manual Sourceror

8. The following prompts appear:
searching for filename loading
Original location is $####, St
Use this for disassembly.

HIT A KEY

9. Note the addresses shown for 'Original location'. & hes the beginning and ending
addresses for the file to be disassembled.

10. The SOURCEROR menu appears displaying the commandstderddr disassembly.
You may start disassembling now, or use any of the othememwfs. Your first
command must include a hex address. Thereatfter thisismaptas explained shortly.

NOTE: When disassembling, you must use the ORIGINAL addrEthe program,
not the address where the program currently resided! Hpiear that you are
disassembling the program at its original location, butadigt SOURCEROR is
disassembling the code at its present location and atanggthe addresses.

11. When SOURCEROR'’s final processing is done, the M&RBMain Menu appears.
SOURCEROR always disassembles an area in RAM 0. Tthas)jot possible to
disassemble the ROMs without saving a portion of the ROUg to a disk file and
having SOURCEROR load that into RAM.

COMMANDS USED IN DISASSEMBLY

All commands accept a 4-digit hex address before the cachiatier. If this number is
omitted, then the disassembly continues from its ptesskdress. A number must be
specified only upon initial entry.

If you specify a number greater than the present addressy ORG will be created.

More commonly, you will specify an address less tharpthsent default value. In this case,
the disassembler checks to see if this address equals tleesaadtlone of the previous lines.
If so, it simply backs up to that point. If not, thémacks up to the next used address and
creates a new ORG. Subsequent source lines are "erdisedienerally best to avoid new
ORGs when possible. If you get a new ORG and don't wany backing up a bit more

until you no longer get a new ORG upon disassembly.

This "backup" feature allows you to repeat a disassempbuithave, for example, used a
HEX or other command, and then change your mind.

Page 115



Merlin 128 User's Manual Sourceror

SOURCEROR COMMAND DESCRIPTIONS
L (List)

This is the main disassembly command. It disasser@bléses of code. It may be repeated
(e.g. 2000LLL will disassemble 60 lines of code starting at $2000

If an illegal opcode is encountered, the bell will soand opcode will be printed as three
guestion marks in flashing format. This is only to call yatiention to the situation. In the
source code itself, unrecognized opcodes are converteXadelta, but not displayed on
the screen.

H (Hex)

This creates the HEX data opcode. It defaults to onedfydata. If you insert a one byte
(one or two digit) hex number after the H, that nundfetata bytes will be generated.

T (Text)

This attempts to disassemble the data at the currentsadabean ASCII string. Depending
on the form of the data, this will automatically heagsembled under the pseudo-opcode
TXT or DCI. The appropriate delimiter (" or') is autoratly chosen. The disassembly will
end when the data encountered is inappropriate, when 6Zrarhave been treated, or
when the high bit of the data changes. In the lastitondthe TXT opcode is automatically
changed to DCI.

Sometimes the change to DCI is inappropriate. This cheagée defeated by using TT
instead of T in the command.

Occasionally, the disassembled string may not sttipeadippropriate place because the
following code looks like ASCII data to SOURCEROR. Irstavent, you may limit the
number of characters put into the string by inserting sabomeo digit hex number after the
T command.

This, or TT, may also have to be used to establishaireat boundary between a regular
ASCII string and a flashing one. It is usually obvious whikieshould be done.

W (Word)

This disassembles the next two bytes at the curreatidocas a DA opcode. Optionally, if
the command WW is used, these bytes are disassemiddd2B opcode.

Page 116



Merlin 128 User’'s Manual Sourceror

If W- is used as theommand, the two bytes are disassembled in the form SBHEL-1.

The latter is often the appropriate form when the @noguses the address by pushing it on
the stack. You may detect this while disassemblingfter the program has been
disassembled. In the latter case, it may be to your &alyano do the disassembly again
with some notes in hand.

HOUSEKEEPING COMMANDS
/ (Cancel)

This essentially cancels the last command. More Bxaicte-establishes the last default
address (the address used for a command not necesdaahedtto an address). This is a
useful convenience which allows you to ignore the typingmo&ddress when a backup is
desired.

As an example, suppose you type T to disassemble som& eexmay not know what to
expect following the text, so you can just type L to look.&then if the text turns out to be
followed by some Hex data (such as $8D for a carriagemetsimply type / to cancel the L
and type the appropriate H command.

Q (Quit)

This ends disassembly and goes to the final processindp wghéeitomatic. If you type an
address before the Q, the address pointer is backedttoottncluding) that point before
the processing. If, at the end of the disassemblydidassembled lines include:

2341- 4C 03 EO JMP  $E003
2344- A9 BE 94 LDA  $94BE)Y

and the last line is just garbage, type 2344Q. This willeahe last line, but retain all the
previous.

FINAL PROCESSING

After the Q command, the program does some last minutegsmg of the assembled code.
If you press RESET at this time, you will return to Nfedl28 and lose the disassembled
code.

The processing may take from a second or two for a phogram and up to several minutes
for a long one. Be patient.

When the processing is done, you are returned to Merlin 11&h& newly created source
in the text buffer. You can use Merlin 128's Save conthta save it to disk when you
want.

Page 117



Merlin 128 User's Manual Sourceror

DEALING WITH THE FINISHED SOURCE

In most cases, after you have some experience anohiagsyou used reasonable care, the
source will have few, if any, defects.

You may notice that some DA's would have been more apptejn the DA LABEL-1 or
the DDB LABEL formats. In this, and similar caseaniy be best to do the disassembly
again with some notes in hand. The disassembly is sk gné painless, that it is often
much easier than trying to alter the source directly.

The source will have all the exterior or otherwise cogmized labels at the end in a table of
equates. You should look at this table closely. It shoulccootain any zero page equates
except ones resulting from DA's, JMP's or JSR's. Bradmost a sure sign of an error in the
disassembly (yours, not SOURCEROR'S). It may havdteesfrtom an attempt to
disassemble a data area as regular code.

NOTE: If you try to assemble the source under these gonsli you will get an error as
soon as the equates appear. If, as eventually you shoulthoxeuthe equates to the start of
the program, you will not get an error, but the assemialynot be correct.

It is important to deal with this situation first as trabbuld occur if, for example, the
disassembler finds the data AD0O08D. It will disassemladeritectly, as LDA $008D. The
assembler always assembles this code as a zero pagetios, giving the two bytes A5

8D. Occasionally you will find a program that uses thisnféor a zero page instruction. In
that case, you will have to insert a character afeet DA opcode to have it assemble
identically to its original form. Often it was data hretfirst place rather than code, and must
be dealt with to get a correct assembly.

The Memory Full Message

When the source file reaches within $600 bytes of the £itsl available space you will see
MEMORY FULL and "HIT A KEY". When you hit a key, SOURGOR will go directly to
the final processing. The reason for the $600 byte gaptiSERCEROR needs a certain
amount of space for this processing. There is a "seavettide provision at the memory
full point. If the key you press is CTRL-O (for overngdéhen SOURCEROR will return for
another command. You can use this to specify the desiddgepoint. You can also use it
to go a little further than SOURCEROR wants you tal, disassemble a few more lines.
Obviously, you should not carry this to extremes. If youtgetclose to the end of available
space, Sourceror will no longer accept this overridevati automatically start the final
processing.

Page 118



Merlin 128 User's Manual Sourceror

Changing Sourceror's Label Tables

One of the nicest features of the SOURCEROR prograneiautomatic assignment of
labels to all recognizable addresses in the binary filegb#isassembled. Addresses are
recognized by being found in a table which SOURCEROR refesetharing the
disassembly process. This table is on the disk undeatine LABELS.O. For example, all
JSR $FFD2 instructions within a binary file will be listed3QURCEROR as JSR BSOUT.
This table of address labels may be edited by using twgan LABELER.

To use Labeler, press 'G' from the MAIN MENU, type 'lAIHER', and press RETURN.

LABELER COMMANDS
L: LIST

This allows you to list the current label table. Aftet, press any key to start the listing.
Pressing any key will go to the next page; CTRL-C willrabe listing.

A: ADD LABEL

Use this option to add a new label to the list. Simbplythe program the hex address and
the name you wish associated with that address. REEEEIRN only, to abort this
option at any point.

D: DELETE LABEL(S)
Use this option to delete any address labels you do notinver list. After entering the

'D' command, simply enter the NUMBER of the label yeant to delete. If you want to
delete a range, enter the beginning and ending label nursbpesated by a comma.

F: FREE SPACE

This tells you how much free space remains in the tabledia table entries.

Q: QUIT

When finished with any modifications you wish to makéh label table, press 'Q' to
exit the LABELER program. If you wish to save the nele,fpress 'S'. Otherwise, press

ESCAPE to exit without saving the table, for instancgouf had been reviewing the
table.

Page 119



Merlin 128 User's Manual Sourceror

SOURCEROR.XL

SOURCEROR can disassemble an object file up to about &6gth. For files longer than
that, you can use SOURCEROR.XL. This is a disk basesioreof the disassembler
capable of disassembling object files up to nearly 32K igtkerAfter using the Main Menu
'G' command to run SOURCEROR.XL.O, you follow the sgnoeedures as with the
standard SOURCEROR.

After the object file has been loaded and you have lweérit$ address range, you will be
prompted to insert a blank formatted diskette. The diskiets not have to be blank, but it
must have a large amount of free space on it, andst nat have filenames that are the
same as those used by SOURCEROR. XL. The loaded oligentust be at least a page
shorter than 32K since it must fit in memory between $&0@D$FF00.

Disassembly proceeds in the same way as with thdathii$OURCEROR. However, after
about 6K has been disassembled, a portion of the disé$sd source will be saved to disk
in the file called TEMP.A. After more disassembly, aeotbortion is saved as TEMP.B and
so on. Since the saved portion leaves a sizable rdaerastill in memory, the interactive
feature of SOURCEROR.XL is maintained. Thus, you cdinlstick up' a reasonable
distance after an automatic file save.

When you press 'Q' to quit, the final TEMP file, or polgstwo, will be saved. The
SOURCEROR.XL program will then go into its final prodagsstage. Do not
interrupt this processing. When it is done, you will denreto the Merlin 128 Main
Menu.

While in final processing, each of the TEMP files isorédgo memory twice. During the
second pass, each file is deleted and the final resthieqirocessing is saved in files named
SOURCE.A.S, SOURCE.B.S, and so on. The equates are seaeseparate file called
EQUATEFILE.S. These are all PRG file types and lbartoaded by Merlin 128 as long as
thefull filename is used. You may prefer, however, to load thairtlzen use the ‘W’
command to write them as TXT files.

As with the standard SOURCEROR, you may have to make shamges regarding any
zero page equates in order to get the file to assemblectgrr

Of course, to assemble the resulting file, you will haverite a short master program that
calls all of the other files by using the PUT opcode. kan®le, it might look like this:

PUT "EQUATESFILE.S"
PUT "SOURCE.A.S"
PUT "SOURCE.B.S"
PUT "SOURCE.C.S"

Page 120



Merlin 128 User's Manual Utilities

UTILITIES
FORMATTER

This program is provided to enhance the use of Merlin 128jaseral text editor. It will
automatically format a file into paragraphs using a sgetiine length. Paragraphs are
separated by empty lines in the original file.

To use FORMATTER, you should use the MAIN MENU 'G' comthaFORMATTER will
then load itself into high memory.

This will simply set up the editor's USER vector. Tanfat a file which is in memory, issue
the USER command from the editor.

The formatter program will request a range to formagolf just specify one number, the
file will be formatted from that line to the end. Thgyu will be asked for a line length,
which must be less than 258nally, you may specify whether you want the file ifiesti on
both sides (rather than just on the left).

The first thing done by the program is to check whetheobeach line of the file starts
with a space. If not, a space is inserted at theadtadch line. This is to be used to give a
left margin using the editor's TAB command before udiggRRINT command to print out
the file.

Formatter uses inverse spaces for the fill required bysided justification. This is done so
that they can be located and removed if you want tamefothe file later. It is important
that you do not use the FIX or TEXT commands on a filer é@fthas been formatted (unless
another copy has been saved). For files coming froermadtsources, it is desirable to first
use the FIX command on them to make sure they haveimeeikpected by FORMATTER.
For the same reason, it is advisable to reformde aiging only left justification prior to any
edit of the file.

Don't forget to use the TABS command before printingeofotrmatted file.

XREF, XREFA

These utilities provide a convenient means of generatingss-ceference listing of all
labels used within a Merlin assembly language (i.e., syymogram.

Such a listing can help you quickly find, identify and traakies throughout a program.
This becomes especially important when attempting to utashet,sdebug or fine tune
portions of code within a large program.

The Merlin assembler by itself provides a printout oiytmbol table only at the end of a
successful assembly (provided that you have not defeatef#tture with the

Page 121



Merlin 128 User's Manual  Utilities

LST OFF pseudo op code). While the symbol table allowsy®ee what the actual value
or address of a label is, it does not allow you to follbe/use of the label through the
program.

This is where the XREF programs come in.

XREF gives you a complete alphabetical and numerigatiqut of label usage within an
assembly language program. XREFA gives a cross refetableeby ADDRESS. This is
more useful for large sources containing lots of PUE filealso does not use as much
space for its cross-reference data and therefore calbehlarger source files than XREF.

Sample Merlin Symbol Table Printout:
Symbol table - alphabetical order:

ADD =$F786 BC =$F7B0 BK =$F706
Symbol table - numerical order:

BK =$F706 ADD = $F786 BC =$F7BD
Sample Merlin XREF Printout:
Cross referenced symbol table - alphabetical order:

ADD  =$F786 101 185*

BC =$F7B0 90 207*

BK =$F706 104 121*

Cross referenced symbol table - numerical order:

BK =$F706 104 121~
ADD =$F786 101 185*
BC =$F7B0 90 207*

As you can see from the above example, the "defifitio actual value of the label is
indicated by the "=" sign, and the line number of eawh iln the source file that the label
appears in is listed to the right of the definitionatidition, the line number where the label
is either defined or used as a major entry point isxadf("flagged") with a “*”.

An added feature is a special notation for additional sofiles that are brought in during
assembly with the PUT pseudo opcode: "134.82", for exanmulEaites line number 134 of
the main source file (which will be the line containihg PUT opcode) and line number 82
of the PUT file, where the label is actually used.

Page 122



Merlin 128 User's Manual Utilities

XREF Instructions
1. From the Main Menu, make sure you've S)aved thehieytou're working on.
2. Type 'G'and at the 'RUN:' prompt, type 'XREF' and fR&SEBURN.

2a. Again from the MAIN MENU, type 'L’ to load your filEnter the Editor by pressing
'E’, and from the colon prompt, enter your appropriateFPBommand.

3. Enter the Editor, then type the appropriate USER cardma

USER 0- Print assembly listing and alphabetical crassarece only. (USER has the
same effect as USER 0).

USER 1 - Print assembly listing and both alphabe#iodl numerically sorted cross
reference listings.

USER 2 - Do not print assembly listing but print alphaiagtcross reference only.

USER 3 - Do not print assembly listing but print both algte&al and numerical cross
reference listings.

For example, to print a cross-reference listing oolydur printer, you could type in:

PRTR 4
USER 3
ASM

USER commands 0-3 (above) cause labels within conditamsgmbly areas with the DO
condition OFF to be ignored and not printed in the<reference table.

There are additional USER commands (4-7) that funchiersame as USER 0-3, except
that they cause labels within conditional assemi@asto be printed no matter what the
state of the DO setting is. The only exception to thikas labels defined in such areas
and not elsewhere will be ignored.

NOTE: You may change the USER command as many times as ybyeags, from
USER 1 to USER 2). The change is not permanent until yaun e ASM command
(below).

4. Enter the ASM command to begin the assembly and priptimcess.

Since the XREF programs require assembler output, ocaleas with LST OFF will not be
processed and labels in those areas will not appeas tabke. In particular, it is essential to
the proper working of XREF that the LST condition be Qtha end of assembly (since the
program also intercepts the regular symbol table outpoit)tHé same reason, the CTRL-D

Page 123



Merlin 128 User's Manual Utilities

flush command must not be used during assembly. The pro¢iempés to determine when
the assembler is sending it an error message onrsh@diss and it aborts assembly in this

case, but this is not 100% reliable.

Another thing to look out for when using macros with XREabels defined within macro
definitions have no global meaning and are therefore nssaeferenced.

DEF MAC <---Macro definition
CMP #]1
BNE DONE
ASL

DONE <<<

---------------------------------------- <---Beg.of program
>>> DEF.GLOBAL <---Macro call

In the above example, variable GLOBAL will be crosterenced, but local label DONE
will not.

XREFA

This is an ADDRESS cross reference program and is hahdg you have lots of PUT
files. Since this program needs only four bytes per cefesance instead of six, it can
handle considerably larger sources. Also the "wheraedfireference is not given here
because it would equal the value of the label except@ydted labels where it would just
indicate the address counter when the equate is done.|Sthsaaes considerable space in

the table for a larger source.

PRINTFILER

PRINTFILER is a utility included on the Merlin diskettattsaves an assembled listing to
disk as a sequential disk file. It optionally allows yolalso select "file packing" for smaller
space requirements and allows you to turn video outpubiofééter operation.

Text files generated by PRINTFILER include the object quattion of a disassembled
listing, something not normally available when saving as®file. This allows a complete
display of an assembly language program and provide®tivegience of not having to
assemble the program to see what the object code leek#\|pplications include:

- Incorporating the assembled text file in a documeimgoerepared by a word processor.

- Sending the file over a telephone line using a modem.

- Mailing the file to someone who wants to work with toenplete disassembly without
having to assemble the program (such as magazine editoys, et

Page 124



Merlin 128 User's Manual Utilities

How To Use PRINTFILER

1. From the Main Menwpress 'G', then type 'PRINTFILER and press RETURN. This
need only be done the first time, and is not necessadfitional source files you may
want to assemble with PRINTFILER.

2. From the Main Menu, type ‘L’ to load followed by the smufilename.
3. Insert a disk with a lot of free space on it to need¢e file generated by PRINTFILER.
4. Press 'E'to enter the Editor, and from the colon ptotype:
USER N :FILENAME
where FILENAME is the name to be used for the tegtdiénerated by PRINTFILER.

'N'" must be in the range of 0 TO 3. 'N' defaults toiDig omitted. The meaning of the
'N'" is as follows:

N = 0 Do not echo output to screen, do not compress file.
N = 1 Echo output to screen, do not compress file.

N = 2 Do not echo to screen, compress file.

N = 3 Echo output to screen, compress file.

PRINTFILER works by redirecting output from what would'mally go to the screen to the
disk file called FILENAME. Since there must be outphg LST OFF pseudo-op must not

be in the source file to be used with PRINTFILER (uniessdo not want to capture some
portion of the file). Do not press ESCAPE during assembly.

Writing to a disk file is much slower than printing to Sween, so be patient. It is faster
than sending the output to the printer.

Because of memory conflicts, it is not possible to IRINFFILER at the same time as
other USER utilities such as XREF.

PRINTFILER sends all assembly output to the disk fileluding the symbol table at the
end, unless you have a LST OFF at the end of the source.

If you choose one of the compression options, packeeésae shown as inverse
characters. All spaces in the file will be replabgda byte representing the number of
contiguous spaces plus $80. Thus, an inverse 'A' ($81) represergpace, an inverse 'B'
($82) represents two spaces, and soon. If you are unablégdawprogram that will read
such a packed file, you should avoid using the compressiammopt

Page 125



Merlin 128 User's Manual Utilities

ALTKEYS

The ALT key can be used with another key to produce a keglmacro. A macro
definition lets you type one key to perform a serieaabions or place a string of text on the
screen. This should not be confused with Assembler redlbad Merlin 128 also supports.

An assembler macro is a definition of a set of asdeninstructions, usually with variables,
that you define within a given source listing. When the gogs assembled, Merlin 128
replaces the macro call with the series of lineslthae been assigned to that macro.

A keyboard macro is a substitute for a small amoubymhg that you might do while
you're using the editor.

For example you've probably typed 'LDA' many times inm&$g language programs. With
Merlin 128, you can press the ALT key and the 'a’ key atdh®e time, and the characters
'LDA' would appear in the opcode field and the cursor wouldtbkee beginning of the
operand field.

Merlin 128 comes with over thirty Alternate key commandshasvn below. These
commands are user definable. You can load the sourcallgel caltkeys.s' and add to or
edit any of the existing commands.

Youtype: You get: Comments

ALT a LDA

ALT b DFB

ALTc CMP

ALTd DEC

ALT e EOR

ALT i INC

ALTj JSR

ALT | LUP Cursor at LUP operand field
--1

ALT m MAC Cursor at MAC label field
<<

ALT o ORA

ALTp PHA Save A X,Y on stack
TXA All 5 lines with one macro
PHA
TYA
PHA

ALTt TXT *° Cursor inside quotes

ALT x LDX

ALTy LDY

ALT A STA

Page 126



Merlin 128 User's Manual

Utilities

ALT P PLA
TAY
PLA
TAX
PLA
ALT X STX
ALT Y STY
ALT S DFB %
ALT 6 AND
ALT 8 ()Y
ALT 9 (,X)
ALT 0O LDA #0
STA  $FFOO

ALT Down arrow
ALT Up arrow
ALT V arrow ERR1t

ALT DEL

ALT RETURN

ALT ;

ALT . LDA #>
ALT , LDA #

ALT = = $

ALT + ADC

ALT - SBC

ALT * ORG $

Retrieve A,X,Y from stack
All 5 lines with one macro

Cursor inside parentheses
Cursor inside parentheses
Cursor on line after STA

Move cursor down 10 lines
Move cursor up 10 lines

Deletes current comment, if any

Move cursor to end of next line

Moves cursor to comment field of next liaued
inserts a semicolon

ALT English Pound * Merlin-128 Macro-assembler *

KEYDEPS

The function key definitions can be changed by loadindikhealled ‘keydef.s’, making
the desired changes and then assembling. Save the asgeminice and object code using

the original name of ‘keydefs’.
The current definitions are:
You press: Definition:

SHIFT-RUN Q RETURN

HELP ASM RETURN
F1 Q RETURN L
F2 Q RETURN S
F3 Q RETURN C
F4 Q RETURN X
F5 USER

F6 USER RETURN

Comments

Quits Editor and goes to Main Men
Assembles source

Quits Editor and issues Load command
Quits Editor and issues Save cordman
Quits Editor and issues Catalog comdma
Quits Editor and issues Disk command
Issues USER without RETURN

Issues USER with RETURN

Page 127



Merlin 128 User's Manual Utilities

F7 PRTR4::
F8 PRTRO::

SAMPLE PROGRAMS AND FILES

The Merlin 128 diskette comes with many sample prograchsanrce files that have been
fully commented. These samples can be loaded, readnoamd have been supplied to
illustrate various commands and techniques available wittirVi8.

DEMO

This is the program used in the Introduction section®ihthnual. It demonstrates a string
loop and keyboard scan for input.

COPY

This is a 1571 disk copy program which uses one or two diivdlastrates direct disk
access methods. The program has a BASIC header and J&Ih from BASIC.

ZAP

This is a 1571 disk zap program that also demonstrates desgsa@chniques.

HIRES

This program contains a set of line drawing and hires pptbutines that can be accessed
from assembly. These routines are approximately fmedifaster than the Commodore 128
built-in routines. The source files illustrate graph@shniques.

SWISH

This is a sample hires demo which uses the HIRES progralm $ome dazzling color

graphics. The source illustrates graphics techniques. Thet dlge SWISH.O, is loaded
and accessed from the BASIC program called SWISH.

Page 128



Merlin 128 User's Manual Utilities

RAM TEST

This is a RAM testing program which uses the hires saedr80 Column text. It can be
run from Merlin 128 or from BASIC. You have to press téseexit this program.

Pl

This is a series of files that all have the preflx Phe purpose of these source files is to
illustrate the proper use of the linking capabilities @rvh 128. The object files have the
'.0' suffix and are 'USR' file types. These objeetsfitan be linked by typing 'LINK
$1C03.PI.NAMES' from the immediate mode prompt (:) in tioe. The linked file is also
on the disk under the name 'PI.O'. It can be run fleMain Menu (press 'G’, type 'PI',
then RETURN). It can also be run from BASIC by typin@@®T 'PI1.O" (RETURN)'.

PRDEC

A subroutine to print A,X in decimal. It uses locatidwis, NH, NFL (scratch) and JUST.
Just should contain O for left justification, and $20rfght justification.

PRINTHEX

A routine to print A, X in hex. The entry at PRBYTEncalso be used to print the byte in A

only, or the entry at PRNIB can be used to print a nibb¥R must be used to set ]1 to O if
the UC/graphics character set is in use, or |1 musttide $20 if the LC/UC character set is
in use.

INPUT
This routine gets input from the current input device (usub#ykeyboard) and stores it at
]2. The input is terminated by a carriage return and canrbaximum of |1 characters in

length (256characters if ]1 = 0). If the standard input buffer $200 isl fise]2, then ]1
cannot be greater than $58.

GETERR

This routine gets the error message from the currenddigi and prints it to the screen.
The device number is assumed to be in FA.

Page 129



Merlin 128 User's Manual Utilities

READKEY

A routine to get a key from the keyboard or input device fButine turns on the cursor,
then turns it off when the character has been redeiMee character is returned in the A-
register.

MULTIDIV

This file contains 16 bit multiply and divide routines.ré&é 16 bit (two byte) locations
ACC, AUX, and EXT must be set up, preferably on zero page

ASCHEX

This routine converts the ASCII string located at ASR30 a two byte hex number located
at NUM and NUM+1. Use the VAR statement to set |1 to ‘' according to which ASCII
set is desired . This routine ignores extra leadinglithus 'ABCDE' will be converted to
$BCDE and so on.

BASIC HEADER

Put this routine at the start of a program to be abRUMN' it.

KERNEL EQUATES

This file contains over 70 common kernel equates.

Page 130



Merlin 128 User's Manual

Glossary

ABORT

ACCESS

ADDRESS

ALGORITHM

ALLOCATE

ASCII

BASE

BINARY

BIT

BRANCH

BUFFER

BYTE

CARRY

CHIP

CODE

CTRL

CURSOR

DATA

DECREMENT

GLOSSARY
terminate an operation prematurely.
locate or retrieve data.
a specific location in memory.
a method of solving a specific problem.
set aside or reserve space.

industry standard system of 128 computer codes assigned to
specified alpha-numeric and special characters.

in number systems, the exponent at which the systpeats
itself; the number of symbols required by that numbstesy.

the base two number system, composed solely of timbens
zero and one.

one unit of binary data, either a zero or a one.
continue execution at a new location.

large temporary data storage area.

Hex representation of eight binary bits.

flag in the 6503tatus register.

tiny piece of silicon or germanium containing many integga
circuits.

slang for data or machine language instructions.
abbreviation for control or control character.

character, usually a flashing inverse space, which magks th
position of the next character to be typed.

facts or information used by, or in a computer pnogra

decrease value in constant steps.

Page 131



Merlin 128 User's Manual

Glossary

DEFAULT

DELIMIT

DISPLACEMENT

EQUATE
EXPRESSION
FETCH

FIELD

FLAG

HEX

HIGH ORDER

HOOK
INCREMENT
INITIALIZE
1/0
INTERFACE
INVERT

LABEL

LOOKUP

LOW -ORDER

LSB

nominal value or condition assigned to a parametsotif
specified by the user.

separate, as with a: in a BASIC program line.

constant or variable used to calculate the distanesekbettwo
memory locations.

establish a variable.

actual, implied or symbolic data.

retrieve or get.

portion of a data input reserved for a specific tjpeata.

register or memory location used for preserving ormbdistang a
status of a given operation of condition.

the Hexadecimal (BASE 16) number system, composecof th
numbers 0-9 and the letters A-F.

the first, or most significant byte of a two-byte Heddress or
value.

vector address to an I/O routine or port.

increase value in constant steps.

set all program parameters to zero, normal, or defanlition.
input/output.

method of interconnecting peripheral equipment.

change to the opposite state.

name applied to a variable or address, usually descrgtive
purpose.

slang; see table.

the second, or least significant byte of a two-byte &tickess or
value.

least significant (bit or byte) one with the leasiue.

Page 132



Merlin 128 User's Manual

Glossary

MACRO

MICROPROCESSOR

MOD

MODE

MODULE

MNEMONIC

MSB

NULL

OBJECT CODE

OFFSET

OPCODE

OPERAND

PAGE

PARAMETER

PERIPHERAL

POINTER

PORT

PROMPT

PSEUDO

RAM

REGISTER

in assemblers, the capability to "call" a code segimgiat
symbolic name and place it in the object file.

heart of a microcomputer.

algorithm returning the remainder of a division operati
particular sub-type of operation.

portion of a program devoted to a specific function.

symbolic abbreviation using characters helpful in tegah
function.

most significant (bit or byte), one with the greatedtie.
without value.

ready to run code produced by an assembler program.
value of a displacement.

instruction to be executed by the 6502.

data to be operated on by a 6502 instruction.

a 256-byte area of memory named for the first bytesdfiéx
address.

constant or value required by a program or operatifumiztion.
external device.

memory location containing an address to data elsewvrere
memory.

physical interconnection point to peripheral equigmen
a character asking the user to input data.

artificial, a substitute for.

Random Access Memory.

single 6502 or memory location.

Page 133



Merlin 128 User's Manual

Glossary

RELATVE

ROM

SIGN BIT

SOURCE CODE

STACK

STRING

SWEET 16

SYMBOL

SYNTAX

TABLE

TOGGLE

VARIABLE

VECTOR

branch made using an offset or displacement.
Read Only Memory.
bit eight of a byte; negative if value greater tHiae.

Data entered into an assembler which will produce @aimac
language program when assembled.

temporary storage area in RAM used by the 6&@i®assembly
language programs.

a group of ASCII characters usually enclosed by delisgach
as'or".

program which simulates a 16 bit microprocessor.
symbolic or mnemonic label.

prescribed method of data entry.

list of values, words, data referenced by a program.
switch from one state to the other.

alpha-numeric expression which may assume or bgressa
number of values.

address to be referenced or branched to.

Page 134



Merlin 128 User's Manual

Index

INDEX

"I" Exclusive OR 52
“&”, Logical AND 52
"I'(,-.", In Macros 94
as a logical OR 5
“p
to abort a CHANGE 36
Editor - Immediate Mode (List from
last line) 38
Editor - to abort LIST 38
to abort a FIND 35
Line Range Delimiter 18
in Macros 94
Sourceror (Cancel) 117
* for Comments 2, 3, 49, 50
. (period),
Listings 38
in Macros 94
256 EXTERNALS 112
6502Addressing Modes 54

A

A: Append File 13
About the Assembler Documentation
47
About the Editor Documentation 17
About the Linker Documentation 100
Absolute addresses, and Linker 100
Accumulator mode addressing 54, 55
Add/Insert Mode Editing Commands
24, 20
ADD~ON operation, in operands 52
Altkeys 33, 126-127
All text, to select 25, 32
AND operation, in operands 52
Angle brackets in Editor Documentation
17
Arithmetic and Logical Expressions 52
ASC 73
ASI 73
Assembler,
to Pause 69, 79
Pseudo Opcode Descriptions 87
Syntax Conventions 49, 54

Assembling large files, and PUT, SAV,

DSK 59-62, 63-6464-65, 100, 113
Assembly 8-9, 33, 45
ASM,

Command 8-9, 33, 45

and the PR# Command 39

and PRTR 3940, 45, 106-107
AST 69
Asterisks (*),

Comments 2, 49, 50

Line of in a comment 30, 33
Automatic renumbering 6-7, 18

B

Back-up copies of Merlin 11,128
Backing up Program Counter 57
Backwards DELETE, in EDIT mode 23,
31, 33 (see also Control-D)
BAD,
ADDRESS MODE 110
BRANCH 110
EXTERNAL 110
INPUT 110
LABEL 110
OBJ 110
OPCODE 110
ORG 110
PUT 111
REL 111
SAV 111
VARIABLE 112
Beginning, move to,
of line of text 22, 32
of source file 25, 32
Binary numbers 50-51
BGE opcode 54
Block cursor 22
BLT opcode 54
Branching,
to Variables 54, 87-88, 89
with Local Labels 88-89
BREAK 111
Bugs, common cause of 55
Building Expressions 51-53

Page 135



Merlin 128 User's Manual

Index

C

C: Catalog 12

pause 16
Case sensitive label
CBM Monitor 43
Change 36
Change DRIVE 14
Changing Printfiler's Options 126
Changing Sourceror's Label Table

118-119
Character case change 19, 23, 32
Character insert mode 22, 32, 34
Characters per line 106-107
Checksum, in object code 80-81
CHK 80-81
Clipboard 22, 23, 26, 28-29, 31-34
Commands Used in Disassembly

(Sourceror) 116
Command summary 32-33
Comments 3, 33, 4980, 69
Comment length 21, 33, 50
Commodore Keys 21, 25-31, 32-34

c=A 25, 32

c=B 25, 27, 32

c=C 25, 32, 34

c=D 26, 32

c=E 26, 32

c=F 23, 27, 29, 32

c=H 27, 32

c=127, 31, 32

c=L 23, 27-28, 32

c=N 28, 32

c=P 28, 32, 34

c=Q 28, 33

Cc=R 28-29, 33, 34

c=W23, 29, 33.

c=X 25, 29, 33

c=Z 29, 33

c=Up 29,33

c=Down 30, 33

c=left 30, 33

c=Right 30, 33

c=DEL 31, 33

c=HOME 24, 31, 32, 33

Page 136

c=TAB 27, 31, 33
c=1 30, 33
c=* 30, 33, 34
c=- 30,33,34
== 30, 33,34
c=-4,6,7,21, 33
Conditional Assembly 84-86
Conditional Pseudo Ops 84-86
Configuration 11, 106-107
Control characters 19
Control-A 22, 23, 32
Control-B ~o to line begin) 22, 32
Control-C, 4, 6
during CATALOG Command 12
to abort assembly 45
to abort List 38
to abort a Change 36
to abort a Find 35
or Control-X (to cancel lines) 34
Control-D (delete) 7, 22, 32, 33
Control-E 22, 27, 32
Control-F (find) 22, 32
Control-I (insert) 19, 22, 27, 40
Control-K 23, 32
Control-L 23, 32
Control-N (go to line end) 23, 32
Control-O (insert special) 23, 32
Control-R (restore line) 23, 32, 33-34
Control-W 23, 32
Control-X (to Cancel global exchange)
23, 32
Copy,
Full Screen Editor 3, 25, 34
Immediate Mode, Editor 37
Copy Utility 128
Copying text,
in Full Screen Editor 3, 25, 34
in Immediate Mode of Editor 37
Copying Merlin 11, 128
Cursor keys 23, 29-30, 33
Cursors,
appearance/types 2, 22, 24, 32
changing 22, 24, 32




Merlin 128 User’'s Manual

Index

moving 22-33
Cut 25 29, 33, 34
CW (Change Word) 36
CYC 70-71
Cycle times, 70-71
column to print 106-107

D

Disk Commands 16
D: Drive Change 18
DA 75
Data, definition of 48
immediate 50, 53-54
string 18, 48, 72-74
storage 75-78{9-80
tables in programs 78
Data and Storage Allocation Pseudo Ops
75-78
DB 75
DCI 73
DDB 75
Dealing with Finished Source 118
Defining,
an Altkey 33, 34, 126-127
a Function key 44, 127-128
a local label 88-89
a local variable 79-80, 87-88
a Macro 95
Delete,
character in Editor Immediate Mode
7,22,32
characters in Pull Screen Editor 22, 32
lines in Editor Immediate Mode 6, 7,

31, 32, 34, 37
lines in Full Screen Editor 6, 7, 26, 33,
34, 37

entire Source File (New) 14, 41
DELETE key 24, 31, 32, 33
Delimited Strings, 18, 48

as an operand 48
DEND 66-67
DFB 75

DICTIONARY FULL 111
Disassembling,
raw object code (Merlin Monitor) 43
raw object code (Sourceror) 114-120
Disk files,
names 10, 13-16,49, 59-62, 63, 97,
104
renaming 16
viewing contents of 39
Division operation, in operands 42
DLOAD addresses and ORG 15
DO 84
Drive change 14
Drive 14
DS 57, 77
and Linker 100,102
DSK 59, 64-65
and the Linker 100, 102
DUM 66
DUPLICATE SYMBOL 104, 111
Duplicating Merlin disk 11,125

E

E: Enter Editor/Assembler 2, 15
Edit 20-21
Edit Mode 2021
Edit Mode Commands 21-34
Editor 2-7, 15, 17, 2145
ELSE 84
END 66
End of line,
marker 21
move to 23, 32
End of source, move to 28, 32
ENT 56
EOM or <<< 87
EQU (=) 55-56
ERR 81-82
and Linker 82, 103
ERR: MEMORY FULL 113
Error Messages (general) 9, 110-113
Evaluation of expressions 40, 52, 53
Exchange, global 23, 26, 32

Page 137




Merlin 128 User's Manual

Index

EXCLUSIVE OR operation, in operands
52

EXP ON/OFF/ONLY 69

EXT 55, 101

External source files 40

Example of Conditional Assembly
84-86

Example of Use of Assembler

Expressions 51-53

Expressions Allowed by the Assembler
48, 51-53

F

Filenames 10, 13,16, 49, 59-62, 63,
97,104
FIN 85
Final Processing of Sourceror files 117
FIND,
a character in Edit mode 22, 32
a string 27, 32, 35
a word 23, 29, 32-33
Find and Replace (global exchange) 23,
26, 32
FIX 40
FLO 76
Forced Assembly Errors 81, 103
Formfeed, printer 69
FW (Find Word) 35
Formatter 121
Formatting Pseudo Ops 68-71
Full Screen Editor,
commands 21-34
entering 2, 5-6, 7, 15,17, 21
quitting 4, 6, 7, 21, 28, 32
FUN 44
Function keys, definitions 16, 44
redefining 44,127-128

G
GET 41, 59, 104

GET Command, and LINKed files 104
General Information 105

Global Exchange 23, 26, 32
Glossary 131

H

H (Hex) 116

HEX 76

Hex-Dec Conversion 41, 50, 52
Hex data, with strings 48, 50, 52, 72
HOME 24, 31, 32, 33
Housekeeping Commands 117
How Does a Macro Work? 90-93
How to Use Printfiler 125

IF 85
ILLEGAL,
char in operand 111
forward reference 111
relative adrs 111
Initialization string, for printer 39-40
Insert,
with TAB key 19, 22, 24, 37, 31, 32,
33
character mode 2, 19, 22, 24, 37, 31,
32, 33
lines 6, 20, 27, 31, 32, 33
control characters 23, 32
Integer division, in operands 52
Inverse spaces 40
Immediate Data Syntax 50, 53
Immediate Data vs. Addresses 50
Immediate Mode of Editor 17-20, 3545
INST 19, 22, 24, 32

K
KBD 79

Keyboard input during assembly 79
Keydefs 33, 127-128

Page 138



Merlin 128 User's Manual

Index

L

L (list - Sourceror) 116
L: Load Source 13
LABELS,
proper form of 5, 49-50
length 49
tables, changing SOURCEROR
119
case sensitivity 49, 56
go to 23, 27-28, 29, 32
LENgth 42
Line length 21, 3350, 106-108
Line numbers 6-7, 21
and DELETE 26, 31, 32, 33
in Immediate Mode 6-7, 18
Lines of text,
to delete 6, 7, 26, 31, 32, 33, 34
to insert 6, 20, 21, 31, 32, 33
to replace 23, 26, 28-292, 33, 34
auto numbering 6-7, 18
Lines per page 108
Link 103-104
Linker
and DS opcode 77, 100,102
and DSK opcode 81,100
and ENT opcode 102
and ERR opcode 103
and EXT opcode 101
and ORG opcode 100
and REL opcode 98-101
and SAV opcode 63-64, 100
File Names 104
LIST 4,6
and the PORT command 38, 41
and PRTR 38, 3940
from last listed line 38
from last specified line 38
to printer, formatted 39, 40, 44
to screen, formatted 39, 40, 44
to slow down 38
without line numbers 39
to abort 38
to pause 38, 69

Listing,
CYCLE times 70-71, 106,107
DO OFF code 84
MACROS 68
limiting bytes printed in 70
Local Labels 88-89

Local Labels, Global Labels & Variables

89

Local Variables,

defining 79-80, 87-88

and PUT files 62
Locate a label or line 23, 27-28, 32
Logical operations, in operands 52
Lower case/upper case,

to change 19,23,32

in labels 49, 56
LST ON/OFF 68
LSTDO or LSTDO OFF 68
LSTDO, configuring 106-107
LUP 79

M

MAC 87
Macros 90-97
defining 95
and PUT files 60-62
libraries, and USE opcode 62, 97
libraries, provided with Merlin 97
listings 68
nested 96
Pseudo Ops for, 87
Main menu 10,13-16, 33, 44
Making Back-up Copies of Merlin 11,
125
Maximum,
length of comments 21, 33, 50
length of labels 49
Memory,
IN USE 104
full 112,113
full in Line: 113
full error, in Sourceror 118
status 22, 27, 32, 42
used by Merlin 105

Page 139



Merlin 128 User's Manual

Index

Merlin,

Memory Map 109

Monitor 33, 4344

internal entry points 82-83
Miscellaneous Pseudo Ops 79-83
Mistakes, fixing 34, 55 (see also

Control-R and £R)
Monitor,

CBM 16,43

Merlin 43-44
MONitor 43-44
MOVE 37 (see Cut, Copy & Paste)
Moving,

the cursor 22-33

text 25, 28-29, 32-33, 34, 37
Multiplication operation, in operands

52

N

Nesting error 112

Nested Macros 90

New 14,41

NOT MACRO 112

Number Format (Binary, Decimal, Hex)
52

O

“.O” Suffix to Files 10, 15, 16, 63, 65
O: OBJECT SAVE Command 10,13, 15,
49
command, and Linker 100,104
OBJ 59, 113
Op code and Pseudo Opcode Conventions
50
Operand and Comment Length
Conventions 50
OR operation, in operands 52
ORG 57-58, 66
and the Linker 100
OUT OF MEMORY 112

P

PAG 69
Page Header, in listing 39, 69, 71
Parentheses,
in Editor Doc 17
and Precedence in Expressions 52-53
Paste 28, 32, 34
PAU 69
PMC or >>> 83
PORT 41
PRDEC program, and PUT FILES 62,
129
Precedence, in operand expressions 52
Preliminary Definitions 48
Primitive expressions 51-53
Print 39, 44
and the PORT command 40
command, and PRTR 39-40
Printer,
slot#, in PRTR command 39-40
string, in PRTR command 39-40, 71
PRINTFILER 124-125
PRIinTeR 39-40 (see also TTL, pg 28;
PAG, pg 69)
Pseudo Opcodes for Relocatable Code
Files 56, 59, 82, 100-104
PUT 59-62
files as text files 14
files vs. Linked files 98-99

Q

Q(Quit), 117
To BASIC 16
to Editor, Immediate Mode 4, 6, 7, 21,
33, 44
to Main Menu 10, 44
QUIT and MON command 44

R

R: Read Text File 14
RANGE ERROR 41,112

Page 140



Merlin 128 User's Manual

Index

REL Files,
and the ERR Pseudo Op 82, 103
and the Linker 77
REL, 56, 59, 82
and OBJ opcode 59
Relative expressions, and Linker 100
Renaming disk files 16
REORG opcode 57
Replace 23, 28-29, 32, 33, 34
Reprint screen 29, 33
Restoring lines in Edit mode 22
Return (RETURN key) 6, 23, 32
REV 74
Reversed string data 74
RTS return to Merlin 10,15, 49
Running a program 131,104
RUN/STOP: See Control-C

S

S: Save source file 10, 13, 49
SAV 63-64, 100
« g

suffix in file names 16,17, 61-62
Screen, reprint 29, 33
SKP 70
Source code format 5, 49-50
Sourceror 114-120
Spaces in a text line 3, 31, 40
Special variables 93-95
Status, memory 22, 27, 32, 42
STR 74
String Delimiters 72
Symbol table, to slow down LISTing 38
Syntax, Source code 46
SYS 2048 16, 105
System requirements 1

T

T (Text - Sourceror) 116
TAB KEY 19, 24,31, 32, 33
TABS,

to zero TABS 15,31,42

and word processing text files 40
Technical Information 105-107
TEXT 40
Text, select all 25, 32
TRuncOFf 44, 70
TRuncON 44, 70, 104
TTL 71 (see PRTR also)

TWO EXTERNALS 112
TXT 73
TYPE 39

U

Undo (fixing mistakes) 34
UNKNOWN LABEL 112
Upper and Lower Case Control 19
Uppercase/ lower case
to change 19, 23, 32
labels 4956
USE, 62
and Macro Libraries 94
USER 42
USR 82-83
Using Sourceror 114-120
Utilities 121-130

Vv

VAL 40

Value of labels 40

VAR 62

VAR opcode, an4 PUT files 62
Variables 62, 79, 85-89, 93-95

W

W: Write Text File, 14
and the Linker 104

W (Word) 116

W 0 command 42

Word find 23, 29, 32-33

Where 42

Why Macros? 90

Why a Linker? 98

Page 141



Merlin 128 User's Manual

Index

Wild Cards,
in Delimited Strings 19
character, changing the 106-107
Word processing text files 40

X

X: eXecute disk command 156
XREF, 121-124

Instructions 123-124
XREFA 121, 124

Z

Zero Page Addresses used by Merlin for

USR commands 82-83
Zero page addressing, forced 54

Page 142



Merlin 128 Quick Reference Card

Full Screen Editor Commands

CONTROL KEY COMMANDS (line oriented)

The Control Key commands consist of cursor moves iaedokriented commands.

Control-A  ------—--mmme- Deletes characters toceof line
Control-B  ----------------- Moves cursor to beginning lafe
Control-D = -----------m----- Deletes character undketcursor
Control-E = -------------—--- Displays memory statusndow
Control-F  ---------mmmmmee- Finds next occurrence afxt character typed
Control-l  --------mmmmmmm- Toggles insert and overgeicursor
Control-L = -----------mm--- Toggles lower case convens
Control-K = --------mmmmmmm- Changes case of charaataeder cursor
Control-N = --------—-mmmmo- Moves cursor to end of line

Control-O  ---------mmmmmm-- Prefix key for typing cordl characters
Control-R  ---------mmmmmmm- Retrieves original line

Control-W = --------—-mmmme- Finds next occurrence obwd in line
Control-X = --------mmmmmme- Cancels global exchangéile in progress
Cursor keys ----------------- Moves the cursor

DEL - Deletes character to ledf cursor

ESC - Moves cursor to beginning axt line
HOME Remembers line for recdly c= HOME
INST Toggles insert and overgeicursor
RETURN  ------mmmmmeeeee Moves cursor down and inselotank line
TAB e Toggles insert and overstrikeirsor

Q Quit Immediate ModetMain Menu

Copyright © 1986 Roger Wagner Publishing, Inc.



COMMODORE KEY COMMANDS (entire listing oriented)

The Commodore Key commands are global commands, wieems they are generally
oriented to the whole listing, as opposed to just theeattine (or a single character).

C=A - Selects text for cut fromre to end of file
C=B - Moves to beginning. Cursor oregénth line
C=C - Start text selection/Copgkected text to clipboard
C=D - Deletes line and places it'imdo’ buffer
C=E - Global exchange (Search & [Hace)

C=F - Finds next occurrence of teatitered

C=H - Toggles half-screen mode

C=1 e Inserts blank line at cursor

C=L - Finds first occurrence of laber line

C=N - Moves cursor to end of listing

C=P e Pastes contents of clipbdawn current line
C=0Q Quits editor and returns to MaMenu

C=R - Exchanges current line withndo' buffer
C=W - Finds next occurrence of whoierd

C=X s Cut selected text to clipboard

C=Z - Current line becomes eleveriitie on screen
cC=Up - Moves cursor up one page

c=Down  ----m--memmmeee- Moves cursor down on page

C=Left = - Moves cursor up 10 lines

c=Right  ------mmmmmee- Moves cursor down 10 lines

C=DEL - Deletes line above cursor; putsundo' buffer
C=HOME -------------m--- Goes to line of last CTRL-HOME

C=TAB - Inserts a blank line at cursor

C=1  =m=eemememeeeeeeeeeee- Produces 1*, 30 spaces, and 1 *

C=*  ememmmceceeeeeee- Produces a line of 32 asterisks

C=-  emmmmmsemeeeeeeeee- Produces a line of 1 * and 31 hypke

C==  smeeemememeeceeeeeeee- Produces a line of 1 * and 31 equghs

Z e e Returns editor to ImmediaMode



|| | Merlin 128"

Merlin 128 is an extremely powerful and
complete macro assembler designed
specifically for the Commodore 128. Best
of all, like any powerful tool, it makes
programming a breeze for the novice or
prol! It consists of the Merlin 128 Editor/
Assembler itself, plus extra demonstration
and utility programs to make one of the
most complete assembler systems avail-
able for any personal computer. Merlin
128 includes:

@ FILE MANAGEMENT commands such as
Load and Save Source, Save Object
Code, Read and Write Text Files, Catalog
disks, Append File, Drive Change, Run
Program, Disk Commands, Go to Basic,
and Go to Monitor.

EDITOR system for writing and editing
programs with word-processor-like
power. The Full Screen Editor offers

over 45 commands including Cut,
Copy. Paste, Add, Edit, Insert, Delete,
Goto Label, Global Find and Replace,
and more. Printouts are formatted with
headers and page breaks.

® ASSEMBLER system which incorporates
such advanced features as Macros (can
be nested), on-line Macro Libraries,
Conditional Assembly, Assemble to
Disk, Linked Files, Dummy program
segments, and more.

LINKER system for generating relocat-
able object code. Linker allows multiple
input and output files.

Merlin 128 supports over 50 Assembler
Directlves for extreme programming
flexibility in data storage, string definition,

checksums, cycle counts and more. It
also provides support for Local and
Global Labels, and Entry and External
Label Definitions for use with the
Linker.

Merlin 128 comes with a Macro Library of
over 20 commonly used macro definitions
and fundamental operations such as Add,
Subtract, Print, Increment, Decrement,
Move, Swap, Set Pointer, Compare
Address, and Goto X, Y.

Sourceror is a sophisticated and easy-to-
use disassembler that creates Merlin 128
source files from binary programs. It is very
fast and automatically assigns labels (from
a list you can edit) to all recognizable
addresses.

Merlin 128 also includes over 20 addi-
tional Sample and Udlity Programs
such as:

@ XREF to generate cross-reference
listings of all labels and addresses used
within the source program.

@ Altkeys and Keydefs to create your
own keyboard command macros and
Function Key assignments. Includes 36
handy, predefined macros for your
convenience.

Copy and Zap, 1571 disk copy and
editing programs which use one or
two drives.

Hires and Swish, demonstrations of fast
Hi-Res graphics line drawing and
plotting routines.

Ram Test, a RAM testing program that
uses the Hi-Res screen and 80 column
text.

Merlin 128 requires a Commodore 128 and
at least one 1571 disk drive or equivalent.

ISBN 0—92776-23-6

—i



