’@WA.V

HOW TO GET THE
ST OUT OF

“Professionai Programmers Share Their Secrers”

o

HOW TO GET THE MOST OUT OF BASIC 8

By

DAVE KROHNE and ROGER SILVA

“Professional Programmers Share Their Secrets"

>
~
*

by

TABLE OF CONTENTS
PART I: UNDERSTANDING BASIC 8

Chapter 1:Getting Started ceeeeeceecacececsccsccccssecsccsccccccccscccacseans 1
Chapter 2:Why BaSiC 87 ceceeecccccccccscccacsassascccscsssscccscnsasssssscs 3
Chapter 3:Graphics MOGES ceececacscccccssscacscscccsscccsscsscssosasccsscscacss O
Your First Program 5
. Modes and Screens 5
Chapter 4:ShApeS cececcacecccccccssocsccccsccsaccscasssssssacsccssscscscasll
Chapter S:Rylander 3D S0lidS ceeeccccccccccscasccccesscsccccsscscsnscscseall
Chapter 6:Buffers & StIUCEUIES ceececccccscccccccccccssssossscscsssscosoael?
Graphic effects 20
Chapter 7:USer INPUL seeecvoccccsscscsccscacascaasascscscssscsscsscscsansald
Keyboard Input _ 25
Using GETKEY) 25
Filename Input : 25
Chapter 8:UtLilitieS ..evecceecvccccccccocccccsccccascssccccscscocscsascanall
Reading the Directory 27
Slideshow 28
Selecting Colors with @Pixel ' 28
Using Menus : 29
Using Print Shop Graphics ; 30
Using a 128D with a 1581 drlve 30
Function Keys . 31
Chapter 9: Additional demonStrationS .eeeecescccccccccssccscccsccecsccsssedd
3D Animator 33
Potpourri 36

PART II: BASIC 8 ANIMATION

INLrOQUCLION ceeaveccccoscscsscecocacccacecccaccecsscsscsccacccccccsesess3d
Chapter 10:Planning yoUr PrOJECL eeeececcccccsccccscscscsscsscscscncacceasedl
Graphic Balance 42
Text Balance 44
Screen Aids ’ - 44
Chapter 11:The 3D Graphic Environment49
Perspective 49
Rotation 51
Creating a Cube S3
Chapter 12:Buffers and SCIEENS ieeeccscscscccsccsaccsssssccscccccccccsccassbl
Buffers . 62
Screens 65
Chapter 13:Animation Details ...69
€FETCH Animation 69
€COPY Animation : 70
Pointer Animation : ' 72
Chapter 14:Music EnhanCeMentS .eceeceesssssssscscscsscccscccccaccasaceaceasalld

APPENDICES

PART I: UNDERSTANDING BASIC 8

CHAPTER ONE
GETTING STARTED

To get the most out of this book, you should have the following equipment:

“ Basic 8.
A Commodore 128D, or a Commodore 128 with 64K of video RAM installed.
An RGB 80 column monitor. ’
A Commnodore 1351 mouse or equivalent.)

Many of the principles discussed in this book will work with the standard
Commodore 128 and could be joystick controlled. However, the 64k of video RAM is
necessary for the display of multiple screens and full size color screen
formats, and the 1351 mouse is a much smoother input device.

You have two disks supplied with "How To Get The Most Out Of Basic 8." The
first disk contains many small programs demonstrating the use of various Basic 8
commands. You will be using this disk for the first part of the book.. Please

note: BEFORE attempting to run any programs, you must first load in the Basic-8
Editor! Without the editor, the programs will not run! ‘

Disk §2 contains the 3D-Animator and the animation demos used in part 2 of
this book. Also included is a Basic 8 runtime library that will allow the demos

to be run.but not listed or edited. To get full use from this book you must
have a registered copy of Basic 8. ' -

There are several programs available from Free Spirit Software that allow
you to create color screens, graphics, fonts, icons and custom pointers in 80
columns on the Commodore 128. Call your local distributer for information about:

Basic 8 Toolkit
Sketchpad 128
News Maker 128

& Spectrum 128

‘ Basic 8 Poster Maker
DigiTalker 128

Chapter 1 - Page 2

i

CHAPTER TWO
WHY USE BASIC 82

Why use Basic 82 Words such as power, flexibility, and simplicity come to
mind. With Basic 8 you can easily access the many features that were probably
the reason you bought your Commodore 128. Features such as the 80 ocolumn

screen, the 1351 mouse, and the RAM expansion unit are all completely supported
and easy to access with Basic 8.

Basic 8 is not a replacement for the BASIC 7.0 that is built into your 128,
but rather an extension that uses BASIC 7.0 as a base. Basic 8 adds over S0 new
compands are added to your 128. These commands add exciting graphics programming
capabilities to your Commodore 128. When you begin programming with Basic 8 you
will be working with familiar Basic 7 commands, while integrating the new Basic
8 commands,

The purpose of this book is to assist in the development of new, exciting
programs for the Commodore 128. We have found Basic 8 to be the perfect base
for the development of powerful 128 programs.” In addition, the authors of Basic
8 have opened the doors for you by allowing you to distribute YOUR programs
using the Basic 8 Run Time Library without asking for any royalties or payments
WHATSOEVER! The only 1legal requirement is that both your program and
documentation must state that the program was written using Basic 8. Lou Wallace
and David Darus have been more than generous with this offer—it is up to you to
put it to good use. ' -

Basic 8 users come in a wide range of types; from the new user who is
wondering how to get started with Basic 8, to the user who wants to stretch the

limits of the 128. This book has been divided into two parts to help both ends
of the range. The first part deals with the "nuts and bolts" aspect of Basic 8,
Here you will find assistance on using screens, modes, buffers, shapes and all
of the other items that are the foundation of your program. In most cases there
are demo programs on the accompanying disk to illustrate the use of each
function. The demos themselves range from simple examples to complex program
modules. We encourage you to 1list, print, and experiment with the simple
examples as you are starting out. Once you begin to understand Basic 8 more
fully, study and experiment with the more complex modules.

The second part of the book deals with many of the advanced features of the -
Basic 8 language. Concepts such as drawing in a three dimensional environment,
animation and special effects are all discussed in the second part.

On-line support for this book and Basic 8 is available on Q~Link in the
-Free Spirit software support area. '

Special Note - Software Pirates, Bunco Artist, Con Men and Swindlers:
‘Thanks to you dubious efforts we have all witnessed a virtual halt in the
development of software for the 128. This, in the end, diminishes the usefulness
of our Commodore 128 systems—the very systems we have poured our life savings
into! Gee thanks! If you are a “Hot Shot™ computer expert (and I have no doubt
that some of you really are), may I suggest that you prove your technical skills

Chapter 2 - Page 3

by developing public domain or commercial software that we could all enjoy? You
might end up earning a few bucks, a few friends and a little bit of respect in
the Conmodore 128 world!

Legal notice: This book and the accompanying. programs are the copyrighted
property of Free Spirit Software. Neither the contents of this book nor the
software may be duplicated for distribution without the written consent of the
publisher.

Chapter 2 - Page 4

- CHAPTER THREE
GRAPHIC MODES

64K of video memory is highly preferred when working with the Basic 8
language. All Commodore 128D's are shipped with this memory installed at the

"factory. Older 128's can be upgraded either at an authorized service center or
with a kit available from mail order houses. :

All Basic 8 graphics work with a bitmapped screen. An 80 column monitor
will display a standard bitmap of 640 x 200 pixels, or dots. One byte holds 8
bits, so a byte is literally 8 dots across on your screen, and a full monochrome
screen will display 80 bytes x 200 scanlines or 16,000 bytes. You can see why
more memory is needed if your 128 as only 16K of video RAM!

The 64K of video memory allows the user more memory for additional: graphic
screens. These additional screens could be used to create a large screen that
can be scrolled around for viewing, or as several screens that can be instantly
switched from one to the other. Parts of a hidden screen can even be displayed
on your main screen. Using several screens and copying portions of them back

and forth is the key to achieving great speed with Basic 8. ~ Commercial Basic 8
programs rely on this speed. .

In addition to allowing multiple screens and instant screen swapping the 64K
of video RAM has another tremendous advantage — all of these screens take no
memory away from your program! You have effectively increased your total
sStorage capacity to 176K. I have found that the addition of the video RAM has
been the single most important upgrade to my system. :

Your First Program

By this time I am sure you are wondering just what you will be able to do
with Basic 8. Perhaps the best place to start is at the beginning. Here is the
world's shortest Basic 8 program:

10 @WALRUS,1
20 E@TEXT:END

Load the Basic 8 Editor, type in this program and then run it. Pretty
amazing! (what did you expect from two lines of code anyway?) All Basic 8
programs MUST start with the @WALRUS command. This command tells Basic 8
- whether your computer has 16K or 64k of video ram. It is used only once for

each program. In addition-to specifying your video RAM, it displays: “BASIC'8
by Walrusoft (c) 1986, 83". Any programs that are distributed using the Basic 8
- run time library must display this copyright logo within the program and must
state in the written documentation that the program was created with Basic 8. .

Modes & Screens R e

Before you start programming you must decide what type of graphic screens
You want to use. If you have a 16K video 'RAM machine I recommend that you work
1n monochrome or the '8x8 olor cell mode. The additional color takes away from

your screen size, however I find that a 640 x 176 color screen is a good
compromise. '

If you have a 64K video RAM machine, you have many options. Not only do you
need to decide what type of graphic screens you are going to use, but also how
many. Most likely you will want to use color in your programs, and most of the
examples in this book use the 8 x 2 color mode. The reason is-simple; smaller
color cells allow you to display more colorful screens. If you just want to

have a scrolling landscape or space scene then you may need to use a large
monochrome screen.

Basic 8 offers a wide assortment of predefined screens to work with. Custom
screens may also be created as your memory allows. These predefined-screens are
fully explained in your Basic 8 encyclopedia under the @MODE command.

For most of our examples we will use the 8 x 2 color cells. After using the
€Walrus,l command we need to issue an @MODE,l:@SCREEN,2 command. This sets us
up in a graphic screen using 8x2 color cells.

A few other commands need to be used at the beginning of our Basic 8
program. We need to set the screen colors, clear the bitmap screen, set the
point of origin (used for 3D perspective), and most importantly, tell Basic 8
the direction of growth for lines, boxes and other graphic shapes. o

If this sounds complicated, don't worry. Just load in the program called
B8.HEADER., All this information is set up for you. Below is an example of a
standard program outline. It includes all of the setup commands as well as the
commands necessary to return you to the normal text screen at the end of your
program. We suggested that you use this outline for all of your Basic 8 program.

10 FAST:TRAP 1000 -

20 @WALRUS,1

30 €MODE,1

40 @SCREEN,2

50 €OOLOR,2,8,0

60 ECLEAR,O

70 €DRaMODA,1,0,0, 0 0,0,0
80 €DpRWMODB,0,0,0

90 €ANGLE,0,0,0,0: @ORIGIN,320,100,100,200,100,200
100 rem start of your program

-

1000 @DRiMODA,1,0,0,0,0,0,0

1010 @DRAMODB,0,0,0

1020 @ANGLE,0,0,0,0

1030 @ORIGIN 320,100,100,320,100,200
1040 €TEXT: PRINT CHRS (14X

1050 END

Chanter R — Paca &

The first step in any Basic 8 program is to define which screens are needed

and to display information on these screens. Several Basic 8 commands deal
directly with this subject. .

@DISPLAY - Loads a picture from disk & displays it on the screen.

Syntax: @DISPLAY,Screen §, Drive ¥, Drawmode, “"Filename"(,X,Y)
Example: @DISPLAY,0,8,0,%pict.art work" (1 X,Y)

One of the most basic functions of Basic 8 is the ability to display a
graphic screen or brush on your computer screen. To use the @DISPLAY command,
you must first create-a picture-with any Basic 8 paint program. Then it is a
simple matter to set up your program with the proper screen format (such as an
8x2 screen) and load your picture with the @DISPIAY command.

There are two @DISPLAY demos on Disk #l. The first one is called
B8.DISPLAY-PICT. This short program sets up an 8 x 2 screen and loads a picture
for viewing. You may note that the bitmap loads in first, then the color.

If you do not want the user to see your picture as it loads, you can make
the background & foreground the same color (black for example.) Another option

is to load your pictures to an alternate screen and copy them onto youf viewing
screen.,

Brushes are loaded and displayed in the same manner. Basic 8 brushes and
pictures both use the same type of file structure. We differentiate between the
two by using PICT. or BRUS. as a prefix (beginning) to the file name. For
example, PICT.HOUSE: would be a picture and BRUS.HOUSE a brush. Pictures are
always full screen size, so the smallest-picture would be 640 x 200 pixels.
Brushes are anything smaller than this. Pictures and brushes both have
identical attributes as far as color cell 'type and display modes.

When loading a brush you will need to define where you want to place it
on your screen by using the optional (X,Y) variables. These two variables
specify where the upper left hand corner of your brush will be after loading.
Remember that the X location will be rounded down to the nearest byte, which
simply means your brush will land on a number which is divisible evenly by 8.
Also your brush will be rounded up to the nearest color cell. (More on color
cells & bitmap mapping later.) .

Run the program B8.DISPLAY-BRUS. The program starts by displaying five
small graphics at various places. on the screen. Press a key and it will display
a plus sign, a circle and a triangle.

The EDISPLAY comiiand can also be modified through the use of four different
drawing modes, : '

Drawmode ' N -
Erase under (replace)-
Merge with (OR)
Common (AND)
Complement (XOR)

WN=O

Drawmode 0 is the most often used, however the other modes can be used to
create interesting effects. As demonstrated by the B8.DISPLAY-BRUS program, the
Merge mode simply allows each graphic to lay on top of another. The Common mode
only displays pixels that all shapes have in common with each other (not
terribly impressive in this case.) The Complemént mode is the most interesting;
this creates an interesting graphic with each complementing pixel being turned
off/on. The Complement mode may be used to create very impressive graphics.

List the program to see how the @Display command was used in each of
the examples. An astute Basic 8 user may note that the disk drive got quite a
workout., In a "real" program we could have loaded the graphics in just once and

used the @FETCH command to do the same thing, however, this was a @DISPLAY demo
— remember?

@C0PY - Copies a graphic block from one screen to another.

Syntax: @C00PY, Source screen, Start X, Start Y, DX, DY, Destination Screen,
EX, EY :

Example: €@0OPY,1,0,0,639,199,2,0,0

The Basic 8 €00PY command is by far the fastest way to display graphics in
any Basic 8 gpplication. I have used this command extensively in all of my
programs to speed things up. The menus in Spectrum 128 are a typical example;
every time you click to access the menus, the current viewing screen (your
picture) is copied onto a hidden screen (temporary storage). The menu itself is
then copied from yet another screen (menu screen) onto the viewing screen. Once
an item is selected the copy command is invoked once again to copy your picture
from the temporary storage screen back onto your viewing screen. In Spectrum the
@o0PY command is also used every time you are using a blinking line (box,
circle) to position your shape. Each blink is the copy command updating the
viewing screen from the temporary storage screen! This is one technique I used
to minimize color bleed. If all of this sounds complex, rest assured it is! For

the curious, run the program called B8.MENU for a sample of a quick pull-down

menu system,

For the rest of us there are two ptograms that demonstrate Jjust: how fast
and useful the @OOPY command really is. The first program is called BS.COPY-1.

In this demo, a graphic is displayed in the upper 1left hand corner of the °

screen. It is then copied several times until the whole screen is filled., Aall

five graphics are displayed in this manner. Note just how fast the screen fills -

up—the copy technique makes Stash & Fetch look like snailst

The next example of the copy command is B8.COPY~2. This is a simulation of
a Basic 8 game. You are commander Drake sitting at the controls of SKYLINK, a
multi-billion dollar space facility near Aspen, Colorado. You are in control of
a powerful space telescope which is currently orbiting the planet Ashdon (found

in the M.33 Tringulum galaxy.) Your mission is to search for life in the far °
reaches of the galaxy.” You may also encounter hazards such as meteorites, black

holes and time warps. Good luck Commander Drake! o

Chanter 1 — Da~a R

2]

Unfortunately, the necessary funds have been cut by Congress leaving
Commander Drake with a neat game demo, but no game yet! This demo uses two 8 x
2 screens. The first screen is simply a picture created with Spectrum 128
showing computer screens and rows of buttons and levers (just waiting to be
pressed!) The second screen is a custom size 8 x 2 screen which is 640 x 346
pixels. When you need a large screen that is not offered by the @MODE and

-@SCREEN commands you may use the @SCRDEF command to create custom screens. The
demo uses this . screen format:

*@SCRDEF,0,0,1,640,346,0,27681
€SCRDEF, 1,0,1,640,200,41521,57521

The large screen was drawn with Spectrum 128 (640 x 200) in two parts and
put together with a simple Basic 8 program (which created a large 8x2 screen,
loaded in the pictures and stored it as a single screen). When you run this
demo, all you need to do is move the mouse around. The space scene you are
viewing on the middle monitor is a portion of screen 0 which is copied onto the

center of screen 1. (Of course you knew that already!) To exit this program hold
down the RUN/STOP key.

You will be surprised when you list this program: It is very short—only
three blocks long! The program itself is mostly setting up and loading
predefined screens, and using the @MOUSE command in a loop to keep .track of

- fouse movement and copy a portion of the space scene to your viewing screen,

This is a good :axample of what you can do with Basic 8. It would hot take a
genius to figure out that by loading several background scenes you really could
develop a new interesting game for your Commodore 128.

ESTORE ~ Stores a screen-to disk as a picture file.

Syntax: @STORE, Screen §, Device #, Compression flag, Filename
Example: @STORE, 2,8,1, *PICT.65~-MUSTANG "

- The @STORE command is very simple to use. Whenever you want to save any
gereen as a Basic 8 picture file use the @STORE command. The example above
Shows how to store an ‘8 x 2 screen (screen #2) to drive 8 in a compressed
format. The name of the file is PICT.65-MUSTANG.

€TEXT - Returns to the 80 column text screen,
Syntax: @TEXT (no parameters needed)

The @TEXT command takes you away from the Basic 8 graphic environment and

back to the Commodore 128's 80 column text screen. Most often this command is

used at -the end of a Basic 8 program. It also can be used in the middle of a
Basic 8 program when you need to ask the user a lot of questions and want to use
standard input. Don't forget to issue a new €MODE command or ‘you will end up

with garbage when you go back to your graphic screen. .

GWINDOWOPEN — Opens a rectangular graphic area as a window.

Syntax: EWINDOWOPEN, X, Y, Window Width, Window Height, Border flag
Example: @WINDOWOPEN,0,0,640,100,1

There are times when you want your graphics and text to appear in certain
areas of your screen but not in others. Or, for example, you need to clear only
the right side of your screen. Windows are perfect for this. A Basic 8 window
defines an area of your screen from which all graphic commands will work. The
upper left corner of your window becomes the new 0,0 coordinate.

EWINDOWCLOSE — Sets the graphics parameters to the screen's 0,0 coordinate.
Syntax: EWINDOWCLOSE (no parameters needed)

The EWINDOWCLOSE function deactivates the current window settings. All
coordinates are reset to 0,0 on your main screen. @WINDOWCLOSE does not erase

the contents of the window nor does it save them to be used again. To save the

contents of a windows you need to @STASH it to a buffer. To clear a window issue
a @CLEAR command prior to closing it.

Chapter 3 - Page 10

L2

CHAPTER 4
SHAPES

Basic 8 offers an assortment of shapes to use in cteatinq your screens. The

most used commands are €DOT, €LINE, @BOX, @CIRCLE and @ARC. FEach of these
‘commands has a demonstration program on Disk #1.

One point to remember is that none of these shapes will draw unless the

'@GROW,X,Y,Z2 command has been executed. I recommend a default setting of:
&GROW,0,0,1. '

€D0T ~ Plots a single pixel dot.

Syntax: €DOT, X, Y, 2
Example: @DOT,320,100,0

Run the program B8.DOT. Your screen will display 640 x 200 pixels. A single
dot represents one of the 128,000 pixels on the screen. The demonstration
program allows you to draw colored dots on an 8x2 screen. To use the demo,
simply move the mouse and click the left mouse button to draw a dot. “The right
mouse button will clear the drawing area. To exit press the Run/Stop & Restore
keys.

@LINE — Draws a line between two user defined points.

Syntax: @LINE, X1, Y1, Z1, X2, Y2, 22, Thickness
Example: @LINE,0,100,0,639,100,0,1

Run the program called B8.LINE. This demo allows you to draw lines with the
mouse by simply holding down the left button. Each of the line's drawing points
is displayed. The purpose of this demo is to familiarize you with the basic
syntax of the @LINE command and show how it relates to a 640 x 200 pixel screen.

Advanced users will want to list this program to see how the “rubber band"
blinking line is made. '

€B0X - Draws a square between user defined points.

Syntax: @BOX, X1, Y1, Z1, X2, Y2, 22, Shear direction, Shear value, Thickness
- Example: @B0X,0,0,0,639,199,0,0,0,1

Run the program called B8.BOX. For this demo boxes are drawn with the mouse
by pressing the left mouse button. For a box to be defined you need the upper *
X,Y,Z corner and the lower X,Y,Z corner. Additional values are shear direction,
shear value and thickness..For this demo these values are set to zero,

€CIRCLE - Draws a circle with a defined radius from any defined point.

Syntax: @CIRCLE, Center X, Center Y, Center Z, Radius, Thickness
Example: @CIRCLE,320,100,0,75,1

Run the program called B8.CIRCLE. The first thing you will notice. is that
the circles are definitely not round! 1In fact, they are almost twice as tall as
they are wide. This is due to the fact that our pixels are not square—they are
60% taller then they are wide,

Basic 8 can use a logical screen of 640 x S12 by using the @SCALE,1 command.

This does not give you any more pixels on the screen, however your circles will
be drawn much rounder.

When you are using the @SCALE command you must remember that your screen
coordinates are also scaled. To place the circle back in the center of your
screen (on the Y axis) you need to divide the old Y axis of 100 by .39
(200/512) . This gives you the new Y axis of 256. If you do not want to plot all
of your shapes on scaled coordinates you can go back to the standard -scaling
factors of 640 x 200 by using the @SCALE,0 command.

Circles also have thickness. The thickness can be set anywhere from 1 to
65535. The most common thicknesses would range from 1-25. The @GROW command
affects the way that your circle is drawn. By growing on the Z.axis each
rendition of the circle will become smaller and smaller creating a thick round
circle. As the demo shows, you may also adjust the growth to be on the X or Y
axis. You can set @GROW to negative values and combine different growth in all

directions. Write a circle program and experiment with the different
possibilities! : .

@ARC — Used to create various polygons or curved lines.

Sﬂmtax:, @ARC, Center X, Center Y, Center Z, X radius, Y radius, Starting angle,
Ending angle, Increment, Thickness, Subtend flag
Example: @ARC,320,100,0,50,100,0,360,10,1,0

Run the program B8.ARC. Arcs are the most complex shapes. At the simplest
they could ‘be considered as ovals. The arc demo shows a variety of ovals made by
stretching the X and Y axes. But the arc command can create much more than just
ovals! By setting the increment flag to a value between 1 and 180 you can create
a variety of shapes including dodecagons, octagons, hexagons, diamonds and
triangles. As you view the demo, note that the increment flag is all that has
been changed.

The @ARC command can create even more than closed polygons. By setting the -
beginning and ending angles, you can use the @ARC command to create curves. The
demo shows a variety of 45 degree curves ranging from 0 to 360 degrees. The,
subtend flag may be on (value of 1) or off (set to 0). The subtend will draw

lines from each end of an arc to the center. This is very useful when making pie
charts. . .) '

Chapter 4 - page 12

CHAPTER FIVE
RYLANDER 3D SOLIDS

Rylander solids were created many years ago for the Commodore 64. They are
among the most beautiful effects available within the entire Basic 8 system,
Spheres are great for planets and columns make nice borders for your Basic 8

. Creations. For an introduction to the world of Richard Rylander's 3D Solids run
the demo called B8.SOLIDS.

This demo starts by showing you several pictures that used these shapes,
Note how shapes will appear to be stacked on each other? There is nothing
complex happening. If you draw several items like donuts, each successive donut -
drawn will appear to be on top of the others.

@STYLE - Defines the attributes with which solids will be rendered.

Syntax: @STYLE, Shade, Scale, Lighting
Example: @STYLE,1,1,0

You are given a lot of control over how your finished products will appear.
For shading you can select either textured or halftone. Textured offers a rough
looking surface made up of random dots, while halftone objects appear to be
smoother, The halftone image offers a more ordered pattern of greys to simulate
shading. As with circles, spheres will appear to be more egg-shaped than round.
Set the scale flag to 1 to correct this problem (and produce a better looking

picture.) I always use the scaling set to 1. For lighting your choices are
normal or backlight.

The Backlight command will add a ridge of light to the darkest area of your
object. 1In effect, the object is drawn as if it had a strong light in front of
it and a dimmer light shining at it from behind. This is also a technique used
by artists to enhance the three dimensional effects of their work.

@SCLIP - Clips portions of 3D solids

sSyntax: @SCLIP, Left, Right, Up,- Down
Example: @sCLIP,S0,50,100,7S

Ever wanted just half of a donut? The @SCLIP (solids clipping) command lets
you have just that. For example; you could define a vertical column and cap it
- off with half a sphere to create a silo. You will be even more impressed with

the solid when you see just how nice the shading blends in with objects clipped
in this manner. All of the clipping is defined from the center of the object.
For example, to do no clipping set all flags to 127. To not render the lower,
half of a circle set the down flag to 0. ‘ ‘

With a bit of experimentation you will soon be developing incredible three-
dimensional pictures that would take many hours to draw with a conventional
paint program. (That would be a lot of pixel editingt!)

€SPHERE - Renders a shaded three dimensional sphere.

Syntax: €SPHERE,X,Y,Radius
Example: @SPHERE,320,100,50

Run the demo called B8.SPHERE. This demo starts by showing you an unscaled
sphere that ‘appears to be more egg-shaped than anything else. When using the
solids, the @SCALE commands do not affect the roundness of the sphere. (It will,
however, affect the X,Y locations.) To adjust the symmetry you need to set the
scaling flag of the @STYLE command to 1 (@sTYLE,0,1,0). Spheres cannot be

‘rotated but the shading styles and lighting may be adjusted as shown in the
demo.

€SPOOL - Creates a shaded spool shaped object.

Syntax: @SPOOL, X, Y, Inner radius, Outer radius, View
Example: @sSPOOL,320,100,50,100,0

Run the demo B8.SPOOL. The spool offers a unique shape for the graphics
enthusiast. It is also the hardest one to visualize. The example shows how the
spool can be drawn in a vertical or horizontal position. Note how the lighting
atfects the inside parameters as the shadows wrap around the central - cylinder.,
As with all of the other objects, the texture and lighting may be adjisted.

E€CYILNDR - Creates a horizontal or vertical column.

Syntax: @CYLNDR, X, Y, Radius, Halflen, Vie
Example: @CYLNDR,10,50,10,2,1 -

Run the demo B8.CYLNDR. Cylinders are very useful objects. With them you
can create vertical roman columns and pillars, as well as horizontal tubes and

logs. Experiment by making long thin columns or short fat columns for different
effects.

€TOROID — Renders a donut shaped object.

Syntax: €TOROID, X, Y, Inside radius, Outside radius, View
Example: @TOROID, 320,100,50,100,0

Run the demo B8.TOROID. Toroids are my favorite shape (I happen to like
donuts!) The Toroid is the only solid that allows you to .view it from three
perspectives. You have two side views, horizontal and vertical, and you also can
see the top view. As you will see, the toroid is created from using an inside’
circle and an outside circle. It works best when the inside is smaller than the
outside. As you can see from the demo, the toroid can have a rough texture or a
smooth texture. As with all objects I suggest you use it with:the scaling flag
turned on. : ’ . : - EE

Chapter S - Pége 14

Since each solid takes a while to be created, they are a bit slow to use by
themselves in your programs. The best way to use the solids is by creating a
scene with Basic 8 and storing it as a picture file. This screen could be used
by itself or touched up with a paint program. Items such a spheres could also be
clipped out and used as . brushes in your program instead of being drawn
individually,

Chapter S — Page 16

CHAPTER SIX
BUFFERS & STRUCTURES

One of the best features of Basic 8 is that the user may easily create a
buffer in RAM to hold various fonts, graphics, patterns and logos. Buffers can
be created in RAM expansion units to hold up to 512k of information. However, I
have found that using an internal buffer of 48k in bank 1 is adequate for almost
all of my needs. If users have a RAM Expansion Unit then they could set up large
buffers as a RAMdisk to hold backups of pictures, charts, or pages until a final
copy is ready to save to a “real" disk. .

How do you know how much will fit in a buffer? The rule of thumb I use to
estimate the amount of buffer space needed is that a full monochrome screen
saved into a buffer requires 16k. Fonts require about 3-4k each. A monochrome
menu that fills half of the screen will naturally require about 8k of your

buffer space. Any graphic can be saved as a compressed file, saving you even
more buffer space. :

When you plan your program you need to decide how much information could be
stored in your buffers, and how much you can simply load in from your disk when
needed. The buffer is always faster then disk access, but remember the user has
to sit and wait initially while you are filling up your buffer. Users fay become
impatient if you load 32 monochrome screens into your 1750 REU for -a fantastic
slideshow presentationt

also, remember for graphics to consider if you have enough video RAM left
for making a 'menu screen' which would allow menus to be copied instantly onto
the users viewing screen. In Sketchpad 128 I use both menu techniques. ‘Users
with only 16k of video RAM have menus stored in a buffer. For 128D users the
menus are stored on a hidden screen and copied to the user screen. I much prefer
the latter as it is very quick.)

Basic 8 tuffers are easy to set up. Run the program B8.BUFFER. To make a
48k buffer add the following lines to your programs:

100 rem define a 48k buffer
110 POKE 47,128: POKE 48,191: CLR
12_0 €BUFFER,1,1024,48000 -

_ The poke statements move the start of you program variables up 48k to make
enough room for your buffer. You must. define your buffer BEFORE using any

variables in your program because the CIR command clears all variables from
memory! '

There are five types of structures that can be stored in a buffer to be
used later in your program: . - :

Structure 1: Ppatr.
Structpre 2: Logo.
Structure 3: Font.
Structure 4: Brus.

~

Charntar & — Darcn~ 177,

Structure 5: Soun.

Sound files do not come with the Basic 8 package. Sound files are from Lou

Wallace's DigiTalker 128 program. Naturally, they are designed for use with your
Basic 8 flles.

Structures are loaded into your buffer with the @STRUCT and @LSTRUCT
commands as in this example:

150 rem Load Data Into Buffer

160 ésTRUCT,1,1,0,0 : QLSTRUCT,1,8,1,0 ,"PATR.CHECKS": AA = @SEND
170 @sTRUCT,2,2,0,AA: @LSTRUCT,2,8,1,AA,"LOGO.MENU" : BB = @SEND
180 esTRUCT,3,3,0,BB: QLSTRICT,3,8,1,BB,"FONT.ROMAN® : OC = @SEND
190 eésTrRUCT,4,4,0,0C: QLSTRUCT,4,8,1,0C, "BRUS.MYPIC" : AA = @SEND

The E€STRUCT command is used to define a structure type and its starting
address in the buffer. The @LSTRUCT command is used to load a structure from
disk into a buffer. The @SEND command returns the last buffer address:used by

the structure loaded. This then serves as the starting address for the next
structure. '

The commands used to access each of these structure types are as follows:

@PAINT — Fill area with current pattern

Syntax: @PAINT, X, Y, Bank#, Address, Size
Example: @PAINT, 100,100,0,57346,1024

The E@PAINT command is used in conjunction with @DRWMODA and the @PATTERN

commands. Before trying to £ill in an area, set €DRWMODA to pattern mode 1like
this: - -

@DRwMODA,1,0,0,0,1,0,0.

We have set the first and fifth values to 1. The first puts.us into jaml
mode, and the fifth specifies to use the current pattern when drawing. Next you
need to tell Basic 8 which structure # is the pattern to be used:for drawing.
Use the @PATTERN command like this:

€PATTERN,1.

- Then you will be ready to £ill an area with the @PAINT command, Before
issuing the @PAINT command, be sure that the area you are painting is totally
enclosed; otherwise you may end up f£illing the entire screen with your pattern.

The @PAINT oomnand is unique because to use it you must define a stack area
(Address and Size) to be used as a reference for the current £ill pattern. In
most cases the lk paint stack suggested by the Basic 8 Manual is adequate.

However, this: stack could be used up if you are filling around a complex shape
on your screen.

Chapter 6 - Page 18

€L0GO - Display selected Logo

Syntax: @LOGO, Structure number
Example: @QLOGO, S

Logos can be made easily by using the Logo Maker program supplied on your
Basic 8 disk. Logos are very practical for things such as help menus which can
pop down on the display. You will find Logo Maker on your Basic 8 disk number
two. The program name is B8.Logo Maker.3.

The best way to plan your logo is to first use your favorite paint program
to print out several copies of PICT.GRID 8X8 on Disk #1 from this book. This 8x8
grid can be used to create logo messages in the blocks and determine what your
finished logos will look like. This layout is essential because Logo Maker will
prompt. you for the column#, row#, height, width and direction of each string in
your logo. You also need to decide which structure to use—either a standard

Structure such as 254 for upper/lower case or the structure of a font you have
loaded into a buffer. :

Logos are very practical because they are compact and fast, The alternative
is to define each string as a @CHAR structure which uses up precious basic
programming space.

Run the program B8.LOGO for a demo of logos being used as a fast, flexible
menu system. Since a plain "This is a menu" type demo does not give the user a
real “feel" for what a menu system can look like, I developed a sample Basic 8
program called "The Movie Studio®. You will be treated to a short animation
(made with the Basic 8 3D Animator!) Then the main screen will be displayed. all
of the menus (6 of them!) were made with the BS.LOGO MAKER.3. The Fkeys are one
logo structure and each of the menus are individual structures. Each structure
is only 1 block long and takes very little buffer memory.

To "use" The Movie Studio simply press the function keys F1 - F5. Each of
the submenus will be displayed for a_few seconds then you will return back to
the Main:Menu. To exit this demo press the ESCAPE key. As a fun project you are
welcome to write the rest of the program, and distribute it commercially!

., - -Several items were used to put this demo together., First I determined the
- general layout of the screen. Then I used Basic 8 to create a screen layout and
saved it as a picture file, Run the demo BS.IAYOUT to see how this worked. All
- of the color and text was added with Spectrum 128 and the graphic itself came
from my ‘personal graphics library, drawn with Sketchpad 128, Sometimes to get
the results you want, it is best to use several techniques. -

€CHAR - Prints text to the graphic screen using a user defined font.
Syntax: @CHAR, Structure #, Column, Row, Height, Width, Direction,"Char String"

Exanple: @CHAR,254,0,0,1,1,2,"I Love Basic 8"
(See Basic 8 manual. for special control-: codes)

Maardene 5 mwmn TN

Basic 8 offers quite an outstanding selection of fonts to choose from. Your
programs can have their own unique style by simply selecting a nice looking
font. In addition you can create your very own fonts with the Basic 8 Toolkit!
You may use as many fonts as you want in any Basic 8 program.

Fonts may be used two ways with Basic 8. The most obvious is to use the
@CHAR command to position a font of any size and color anywhere on your screen.
Plus, you can print your statements in any of the 8 directions!

Run the program B8.CHAR for a demo of using fonts with the @CHAR command.
This demo will load 8 fonts into a buffer and then display each font. Fonts can
also be written in any of the 8 directions, which incidentally may be hard to
read! Fonts can be given both foreground & background colors. They may be
written upside down, backwards, sideways, any size and placed anywhere on the
Screen. The listing of this demo is long but the demo itself was kept simple so

users may 1list it to see how it was put together. Also, the entire demo was
created with standard Basic 8 fonts.

" Most people do not realize that Basic 8 fonts can also be used on the
standard 80 column text screen. The command is @FONT ° which replaces the
Commodore font set (upper/lower) with a font in your buffer. There are many
reasons you may wish to use the 80 column screen; the most obvious of which is
when the user is asked for a lot of keyboard input. Perhaps you need to ask

several questions of the user to make your latest Basic 8 adventure game more
interesting. ' - ~

Whatever your reasons are, don't forget that you are welcome to use any of
the colors and standard 80 column features with your text screéns! Run the
program B8.FONT for an example of Basic 8 fonts on your text screen.

€FETCH = Recalls a brush structure stored in a buffer and displays in on the
screen .

Syntax: @FETCH, Structure #, X, Y, Draw Mode
Example: @FETCH,1,320,100,0

The @FETCH command is used to place a brush you have stored as a structure
anywhere on the current screen. The structure number specifies which brush to
use from the buffer. The inverse of this command is @STASH, which allows you to
clip a part of your screen as a brush.

Graphic Effects . ;
€@CBRUSH ~ Flips a non—compressed brush structure

Syntax: €CBRUSH, Structure #, Reverse, Reflect, Flip .
Example: €CBRUSH,1,0,0,1 ‘

Run the demo BS.C\BRUSH. The CBRUSH command allows you to change a non~-
compressed brush structure within a buffer. The three options allow you to
reverse the colors, make a mirror image or flip the brush upside down. In this

Chapter 6 - Page 20.

demo we use a full-size screen as our brush and show how it looks when £lipped

and mirrored. Reverse works much better on monochrome graphics due to the
reversal of color cells in color mode.

@Z00M ~ Displays an enlarged brush structure

" Syntax: @Z00M, Structure #, Size, Destination X, Destination Y
Example: €200M,1,8,0,0

The B8.Z0OM demo shows two important concepts. First the ZOOM command will
enlarge any non—compressed graphic stored in a buffer. The enlargement is always
8x on the X axis and may be adjusted from 1-15x on the Y axis (limited by color
cells). For a truly proportional enlargement . (such as a pixel editor) you need

to clip a brush that is 80 x 25 pixels and expand it 8 times in both directions
to make a 640 x 200 screen.

, The next important concept is being able to move a blinking box around the

screen. In this case (just by chance!) we have a box that is 80 pixels wide and
25 pixels deep. To move the box, set @DRWMODA to complement mode, read the
current X/Y position of the mouse and use two @BOX commands like this:

@BOX,x,y,.0,x+80,y+25,0,0,0,1
- @BOX,x,y,0,x+80,y+25,0,0,0,1

The first box ocomplements itself with the picture, the next box sets
everything right again. List the program to see how this works inside of a mouse
reading loop. You will also use this same technique to draw boxes and lines in
paint programs. ‘

NMhanbAv L o Dar~a M1

Chapter 6 — page 22

CHAPTER SEVEN
USER INPUT

Basic 8 uses the @MOUSE command to keep track (internally) of the mouse's
current position, This ocommand has two steps; first the mouse reader must be
activated and set up for a mouse (port 1) or a joystick (port 2); then the
EMOUSE command is used to return the X and Y location of the mouse.

All of the examples in this book assume you are using a 1351 mouse in port
l. Wwhy a mouse? My answer is simple, the Amiga uses a mouse, Macintosh uses a
mouse and Nintendo uses a joystick. Need I say more? I have yet to see serious
software developed using a joystick - with the exception of games. I use a mouse

because it gives a much smoother response and allows you to make full use of
both buttons.

You may have a legitimate reason for using a joystick, or you may develop a
project that could use either the mouse or the joystick for input. One note: If
you have a program that could use either one for input, then you aren't using
the mouse to its full capacity. You can test for mouse/or joystick input by
using the short example program. '

E@MOUSE - Read the mouse (joystick) current location.

Syntax: €@MOUSE,On/off,Device, X , Y (,Joystick increment)

Examples: €MOSE,1,0,0,0 - Mouse on
X = @MOUSE, 2,0 . Read X position
Y = @MOUSE, 2,1 Read Y position
eMOUSE, 0 Mouse off

Run the demo on disk #1 called B8.MOUSE. The mouse is set up by using:
€@MOUSE, 1,0,320,100. This command turns on the mouse IRQ reader, sets the device
to 0 (1351 mouse in port 1), X location to 320, and Y location to 100. Use this
command once early in your program.

To have the pointer move around the screen in response to the mouse you need

“ to make a DO LOOP that reads the mouse X/Y position and places the pointer at
that location. -

For smooth mouse control, run the loop until a button is pressed and then
do your IF THEN statements to £ind out which button was pressed and to send the
program to the correct location. -

Here is a sample DO LOOP to read the mouse location:

100 DO UNTIL JOY (1) <> O
110 X=@MOUSE,2,0 '

120 y=eMOUSE,2,1 0
130 €pPrR,1,X,Y,0 ; -
140 LOOP: @PIR,O

Chapter 7 — Page 23

150:
160 REM check to see which button is pressed

The mouse demo will tell you which button was pressed and the current X/Y
location of the pointer. Note that the demo does not update the positions until
a button is pressed. If it did, smooth mouse control might be compromised.

Again, it is best to do all of your screen updates, button checking and such
outside of your mouse-reader loop.

In actual practice the DO LOOP as shown above should be just one line of
code, scrunched together with no spaces. When programming in Basic every nano
second counts! The code should look like this: .

100 DO UNTIL JCY(1)<>0:X=@MOUSE,2,0:Y=@MOUSE,2,1:@PTR,l,X,Y,O:DOOE:@PTR,O

@PTR - Controls location and definition of current pointer (arrow).

Syntax: @PTR, On/Off, X, Y, Definition # (, Height)
Examples: @PTR,0 Pointer OFF
* @PIR,1,0,0,0 Pointer ON
@PIR,2,0,0,0 Leave trail

The @PTR command is wused to activate the pointer, place it;_:at the X/Y
location, and can be used to display any one of 16 pointers. Wwhen Basic 8 is
booted, pointer #0 will be the arrow. The above demo uses this arrow as the

pointer. Pointers may also be edited to suit ‘your needs by using the Basic 8
toolkit. -

The last command in the mouse-reader loop is @PTR,0. This turns the current
pointer off. .Use this only once after using the pointer. If the commend is
issued twice you will pick up a glitch on your screen.

Run the demo B8.DRAW-1l.- This demo uses the same type of mouse reader to
control the pointer. The new pointer is customized to be a large dot (pointer
#2) and you are working on a monochrome screen for speed. By pressing the left
button you can draw with the current pointer, because in this -case the EPIR
command uses the trail option. . . - :

Sketchpad 128 uses this capability to its full potential. The idea for
Sketchpad 128 came from a three block program similar to this one!

Run the demo B8.DRAW-2. Draw-2 uses the.mouse as a drawing instrument but
does not leave a trail of the pointer. Instead, the pointer is used to point to
a location and then when the left button is pressed you will begin drawing with
a line, (The thickness may be adjusted for special effects.) :

When this program is run you can move the arrow pointer around the screen
until the left button is pressed. When the button is held down this program will
draw a line connecting the last pointer location to the current location. Since
these lines are only a pixel or two apart it will appear as a smoothly drawn
line.

Chapter 7 — Page 24 :

Keyboard Input

When entering data using a graphic screen you may have noticed a “problem"
while using the input statement. As soon as the RETURN key is pressed your
screen gets messed up. This is not really a fault of Basic 8: The problem is

that a 1linefeed is issued when the return key is pressed which messes up your
graphic screen, o

There are several ways to get around the input statement. If data is only

needed at the beginning of your program—asking for the. player's names, for

- example—then you can use the @TEXT command to enter the data on a text screen.

Use the standard INPUT command for this information, then issue a @MODE and
@SCREEN command to start your program.,

Using GETKEY

Often you need the user to enter a single number. Input such as the
thickness for a line, or a printer variable like a secondary address can be
obtained with the GETKEY AS$ statement. For this example we would like to enter a
single number from 1-9. We will use the VAL function to check the value of the
input to see if a number key was pressed. We use the GETKEY AS$ because if we

tried a GETKEY N and the user entered a letter (or other keypress) the program
would crash. .

‘Another reminder about using a GETKEY statement in Basic 8 is té clear the
keyboard buffer of any stray characters., This is done by a simple POKE 208,0
Statement. The code for this GETKEY subroutine will look like thiss)

10 REM input a number from 1-9, return value of n
20 POKE 208,0: GETKEY AS

30 IF VAL(AS)<1l OR VAL(AS)>9 THEN 20

40 N = VAL (AS)

S0 REM at this line n now equals a number from 1-9

-1 suggest that you have this function in a subroutine that could be called
with’ a GOSUB. Your subroutine could also present a command bar asking for a
number from 1-9., When the number: is-pressed the section of screen could be
cleared by using a window .or by replacing the screen with the stash & fetch

* commands. With a little planning you will find that simple subroutines can do a
lot of work for you, and make your programs more efficient.

" Filename Input

‘In most programs it is necessary to enter a file name. BS.FILENAME shows a
simple, yet powerful subroutine that allows the user to type in a name with up
to 16 characters. This name can be edited by using the delete or back cursor
key. The file name is entered when the Return key is pressed. If the ESCape key-
is pressed, the routine will abort to the main menu of your program. -

Run the program B8.FILENAME, Try entering a filéname and using the keys as
described above. List the program and you will see how it works. This has proven
to be a very useful subroutine and can be used in many types of applications.

Chapter 7 -~ Paae 78

Chapter 7 - Page 26

CHAPTER EIGHT
UTILITIES

Reading The Directory

Nearly every program needs access to the directory so the user can load
. files, Basic 8 has the @DIR command, but it is not as simple to use as the other
commands. One nice feature of Basic 8 is the file naming convention used. If you

prefix your program files with “B8." they are easy to find. Here is a list of
- Basic 8 prefixes:

BS. Basic 8 Program file
PICT. Picture file
FONT. Basic 8 font file
BRUS. Brush file (smaller then a full screen)
PATR. Pattern information
PTRS. Pointer data
LOGO. Basic 8 Logo files
P.HC- Basic 8 printer drivers .
PAGE. Large screen for full page printout
SPRD. spreadsheet for BASIC CAIC
SOUN. Sound file from DigiTalker 128
. ICON. Basic 8 icon
DATA. Sequential data file
TEXT. Sequential text file

The Basic 8 @DIR command can be used to search the disks directory for a
specific type of file.

€DIR - Used within a subroutine to read a disks directory

For an example-run the program called BS.DIR READ. This program reads the
current directory four times. The first time it reads all of the files on the
disk. On the second loop it looks only for Basic 8 program files with the BS.

prefix. Next, it looks for all of the PICT. files. Then it will search for all
~of the BRUS. files.

This directory reader can be .accessed 'as often as desired with a simple

. GOSUB. To search for a specific type of file all you need is define FTYPES as
your search string. :

In the "interest of clarity this demonstration uses no graphic screen or
Basic 8 fonts, Reading the directory is one of the critical functions of Basic
. 8. Please list this program, print it out and take the time needed to understand
how it works. Below is an explanation of the “critical® portions of the programs.

10 REM B8,READ DIR ~ _ :Title
S0 DIMDE$(296) - :DES (#) Holds the filenames :
60 DES=" : - :The first variable in your program °

must be a string with 16 blank spaces

Chapter 8 — Page 27

70 DN=8 :Current drive
110 FTYPES=“* :Search full directory
250 REM READ DIRECTORY

260 FOR I=0 TO DE:DES$ (I)="":NEXT:DE=0 :Clear old strings

270 OPEN3,DN,0,"$0: "+FTYPES+"*" :Open channel to disk drive

280 L=EDIRS:IF ST<OOTHEN 320 :Find length of next file. Check for
. I/0 errors.

290 F$=LEFTS (DES,L) :f$ = filename

300 DES (DE)=F$:Assign de$ (#)

310 dE=DE+1:GOTO 280 :File counter/loop

320 CLOSE3: DE=DE-1 _ sClose I/0 channel to disk drive and

Adjust filecount.
360 FOR I=1 TO DE:PRINT DE$ (I):NEXT :Display filenames on a text screen

Note: de$(0) will always be the current disk name.

Slideshow

Slideshows are easy to make with Basic 8. At the simplest level you can
display one picture after the other. But with a bit of effort you can create a
dazzling display with pictures sliding up and down, side-to-side and even
diagonally across your screen.

To set up a slideshow you will need several pictures all in the same format
(I recommend the 8x2 color cell format.) Set up your program to uSe mode 2,
screens 4 & S5, For our slideshow we will be loading pictures on to screen S
(hidden from view.) Then we will use the @OOPY commands to copy our picture onto
Screen 4. While that picturé is being displayed we will load the next one
behind it.

Run the demo B8.SLIDESHOW. The workhorse behind this entire program is the
€00PY command. Anyone could figure out how to copy the entire screen with:
ecory, 5,0,0,640,200,4,0,0. But as graphics enthusiasts we like to add a bit more
to our program. To create the graphic effects, the demo uses the @0OPY command
to copy parts of the hidden screen onto the viewing screen. For example, you can
copy the one side of the picture, pause, then copy the other side. You could
cause the picture to appear on the screen in stripes by copying - every other
column. The picture will appear from the side by copying one column-at a time.

These effects are very simple-to create and most of them simply use the
€C0PY command in a loop to copy parts of the screen from the hidden screen to
the viewing screen. Our demo only shows one picture and blanks the screen
between each copy sequence. Your program should be set in a. loop to display
several pictures! 7 ' ‘

Selecting Colors (@PIXEL)

The Basic 8 @PIXEL command serves two functions. First run the demdo
B8.PIXEL-l. This demo will allow you to point-and-click to select a checkered
square. If you pick a black square then you will be told that the pixel you have
selected is 'on'. The PIXEL command may be used to check even a single dot! The
syntax for the command is: ' '

Chapter 8 — Page 28

A=@PIXEL,320,100,0
If A = 0 then pixel is off
If A =1 then pixel is on

The second function of the PIXEL command is to return both color values in
a given color cell. This is extremely important for example, when you need to
select colors for a paint program. Run the demo BS.PIXEL~2. Pressing the first
button will allow you to paint with the current color. Pressing the second
button will take you up to the color palette where you may select any other

color to paint with. (And you thought this was going to be hard!) The syntax to
read colors is:

C=@PIXEL,320,100,1
Foreground = (C AND 15)
Background = ((C AND 240)/16)

Usig Menus

There are all types of menu possibilities when using Basic 8. The basic
function of a menu is to present the user with a list of options from which to
Select. Keyboard input could be used (press B for a box, L for a line etc..),
however, since this is a graphic environment I would much rather just use the
mouse to point at my selections. '

Menus can be very simple. Suppose for example I had a 1list -of options
listed on the side of my screen like this:

Option §1
Option #2
Option #3

I would wait for the mouse to be clicked and read the Y location. If y=23
I can divide that by 8 (the height of my font) to get 2.87 or rounded off to an
integer of 31 After reading the menu item I could use a GOSUB 100,200,300, I

have clicked on the third option and would use the subroutine found at 1ine 300.
It can be that sinple. .

If you are making a drawing program you could make a strip of small boxes
+ @cross the top of your screen as with Basic Paint. The main point in making menu

selections is to know where you are, and keep your boxes the same size for easy
division,

Now that you understand the @PIXEL command you can have multicolored
options, You could click on something yellow and have your 128 say "YELLOW". You
can implement DIGITALKER 128 with your Basic 8 programs. What a neat idea to
Create educational software! : :

For an excellent pull-down menu system run the demo called BS.MENU. Tt will
take just a moment to create a menu with SO options just waiting to be selected!
This type of menu is very-fast and professional looking. It is used in both News

Maker and Spectrum 128. Practice clicking on -the header bar, -then make a’

selection. The reason for the speed is the fact that the entire menu is

Chapter 8 — Pagé 29

displayed on a hidden screen. Each portion is copied onto your viewing screen

when you select it. Use the copy command generously in your programs—it is very
fast!

'Using Print Shop Graphics

Run the program B8.PRINTSHOP. Print Shop graphics are special to Basic 8.
The reason is that Print Shop graphics are standardized, with pixels drawn on
X,Y ooordinates of 88 by 52 pixels, and they have no color information to sort
out. These graphics are in this format because they are set up for your printer
= not your screen., 40 column screen graphics all deal with an 8x8 pixel color
card, where each portion of a graphic is stacked 8 bytes deep. Basic 8 graphics,

.on the other hand, are laid out sequentially using columns 0-79 and rows 0-199
.in order.

Print Shop graphics are easy to use within a Basic 8 environment. They may
be loaded directly from a Print Shop disk using the 3 block graphics for non-
. Commodore printers. Run’ the program BS.PRINTSHOP for an example.

Now for a short explanation. Print Shop graphics are vary similar to Basic
8 brush files, however, they contain graphic data only and ‘the files are not
proceeded with the ‘11 bytes of data that define a brush structure to Basic 8.
What this demo is doing’is first defining a buffer and then stashing a BLANK
area of the screen the size of the Print Shop graphic. The graphic itself is

"BLOADed on top of the structure. Then to display the graphic, the structure is
fetched from memory.

When BLOADing your graphic you must add the.buffers address (which is
usually 1024), plus the structure's address (zero in this case), plus 11 bytes
to skip over the brush data. For example, to load your Print Shop graphic in -

. structure 0 you would BLOAD it to 1035, as in the example.

Using a 128D With a 1581 Drive

128D users who have purchased a 1581 drive for its increased speed and
storage capabilities are faced with a problem: Their internal drive is set to be
device.§8. This means that they need to set the device number on the 1581 to be
-device §9. What happens when they want to boot a program from drive $97 NOTHING!
Most commercial programs must load several modules, and the program expects
‘these to be on drive #8. Also, a typical way to fix this problem is via
“software, you know the type — "Please turn off drive 8, now turn it back on...".

This just doesn't cut it for a 128D owner with no dip switch, much less a power
switch! : A

Basic 8 programs happen to run best on a 1581 drive! You need the speed to.
load in all of the graphics and fonts, and you can certainly use the storage (I
like all of the fonts etc. to.be on my workdisk!) So I created a small program
that will allow a software swap of device numbers 8 and 9. This program is oh
your disk and is called SWAP#8/9. You may now back up any non-copy protected
software (Spectrum 128 fer example) onto your 1581 drive. You may even create an
autoboot sector for it!. I would even suggest that you put the swap program on
your small disk so it is handy. RS

Chapter 8 — Page 30

Swap will swap any 8/9 cdisk drive combination, however we will consider the
following scenario for this example: You have a 128D with a built-in 1571 drive
which is device 8. You would really like to be using your nifty 1581 drive, but
it is set (by the dip switches) to be device #9. It is a good place to keep your
data, but it would sure be nice to run software from it.

Enter SWAP#8/9. Run the program and a message will appear telling you that
your device numbers are about to be swapped. You will receive a prompt asking
if this is what you want to do. Press "Y" for yes. At this point the program
changes your 1571 drive to be device #10 (Yes, device 10 this is not a
misprint!) Then it changes your 1581 drive to be device #8. Then it looks back
&t the 1571 drive (device #10 remember) and sets it to be device #9. Lastly, the
program initializes both drives to prevent any lingering I/0 errors.

List the program and you will see that it is a very small program. What
amazes me is the- fact that this- has been a problem since the 128D's were
introduced and nobody has addressed this issue. I find Swap to be a very useful
utility which is also qu1te simple, As you can see by the listing, there is

smply no room for a bug or virus to cause any problem whatsoever. It simply
goes in and swaps device numbers.

Function Keys

Function keys make 1life a lot wmore interesting when using a computer.
Howe'ver, there are times when a user may inadvertently press a function key
while in the midst of your Basic 8 program. This is not good considering the
words E€TEXT could appear on your screen instead of the user's intended input:.
Naturally, they will assume the program is defective since you wrote it!

It is a good idea to turn off the function keys at the start of your
programs (or to define them to your own needs as in B8.L0GO demo!) Please
remember to set your function keys back to normal when your program ends.

To make the Function Keys Null:

100 REM ——— Null function keys

110 KEY 1, **

120 KEY 2, "

130 KEY 3, ""

140 KEY 4, ""

150 KEY 5, "

160 KEY 6, "

170 KEY 7, *")
180 KEY 8, "" - :

Add the following line to restore function keys to their normal (Basic 8)
definitions: ‘

500 REM Restore function keys
510 KEY 1, “FAST:E@TEXT" + CHRS (13)
S20 KEY 2, *DLOAD" + CHRS (34)

530 KEY 3, "DIRECTORY" + CHR$(13)

Chapter 8 — Page 31

540 KEY 4, “"

550 KEY 5, “DSAVE" + CHRS (34)
560 KEY 6, "RUN" + CHRS$ (13)
570 KEY 7, “LIST" + CHR$(13)
580 KEY 8, "

When I am programming I prefer to reset keys Fl and F7 as:

KEY 1, “@TEXT"+CHRS (14)+CHRS (13)
KEY 7, "LIST * -

F1 will now restore you to the graphic screen and also put you in
upper/lower case text mode. Graphics can be a little hard to read! F7 will print
"list " to your screen and you may type in which line numbers you want listed.
You may change the program FKEYS (on Disk #1) to suit your own needs.

For: the examples with this book the function keys are left active. This is

because this book is being read by intelligent, progranmer type people who would
never press extra keys when not asked to!

Chapter 8 — Page 32

CHAPTER NINE
ADDITIONAL DEMONSTRATIONS

Basic 8 is such a versatile language it would be impossible to demonstrate
all of its potential. fThe following demonstrations have been selected because
they show the commands we have just studied, and how they can be used in a2
variety of situations. These demos range from animations, to paint programs, to
business applications. I have also included some demonstrations that use very
anusual techniques to achieve "impossible® results. Can you put a Basic 8

graphic on a text screen? It can be done, but don't expect to find the answer in
your Basic 8 manual!

3D Animator

On Disk #2 is a program called BS.3D ANIMATOR. If there was ever a program
that takes advantage of you 128 and peripherals this is it. With the animator
yYou may use a mouse or a joystick for input and works with two drives. It runs
on a standard 16k machine but can create smoother animation by using: the full
64k video RAM capabilities. Also, if you have an REU you can the view the
animations full screen sizet (With a little help from the @ZOOM command,)

This program also takes advantage of the Basic 8 ocommands we have Jjust
studied, and it shows how everything fits together in a large program. Each
section of the program is fully documented by remark statements. You are
encouraged to list it out and see how it was put together. -

Since the program is so large and this is a tutorial of how to get the most
from Basic 8, we decided to include the Basic 8 Run Time Library to show how it
could be used to run your own programs. Note: One small change has been added to
the startup program——it now offers a menu selection that will allow you to exit
with the Run Time system installed. With the RTL installed you may run any of
the demos on either disk without booting your editor disk. :

Special thanks to Kathy Wright for-,allowing us to use her beautiful Pprint

Shop graphics. These animals look so nice when animated——much better then stick
rmen I would have drawn! .

- You may load the Run Time Library and select the 3D Animator from the menu,
Or load in B8,3D ANIMATOR itself. The first prompt will ask if you want to use
the 16k or 64k version (the best demos use the 64k VDC!), and it will ask if a
Ram Expansion unit is available. You may select the Joystick or the mouse by -
clicking a button., The title screen will be displayed while the program is
loading in the menus. In a moment the Main Menu will be presented.

MAIN MENU
All wmenu selections can_be made by?-simply pointing at the desired selection
and clicking the Left mouse button (or fire button). : '

Information

By selecting Information, you will be presented with a screen showing what
mode you are currently using and how many pictures your final animation will
consist of. Also, there is a short demo of what rotation on the X/Y axis will
look like. The Z axis makes objects appear larger or smaller. Once you have read
the information file you may ‘click' your mouse to exit.

Create 3D File

By selécting this option you will be presented with the CREATE 3D MENU.
This menu will allow you to adjust rotations and set the vanish option from 0 -
100%. This menu will be fully explained in a few moments.

Display 3D File -

There are several 3D files supplied with this demo. You will be given a
requester to select a filename. Use the up/down arrow keys to select a file or

press the escape key to exit. If you are in the 16k video RAM mode, you will be
viewing an animation on a single monochrome screen. ;

Drive £

Click on this selection to change your data drive to 8/9. Your data drive

may be a Print Shop Graphics disk. The 3D Animator will save the animations to
drive 8. : ’

Background Color
Foreground Color

Clicking on these options will cycle through the sixteen colors. Usually a
black background with light colored object gives a more dramatic effect. (Black
objects on a white background works well with everything!)

Exit

One click here and you are out of the prbgram!

CREATE 3D MENU

~Rotation-
X Axis On/Off #

You have two places to click for these settings. First you may select the
On/Off option. Off resets the number to zero. On will allow you to increment the
rotations by ten degrees by clicking on the number. When using the X axis
remember that the top will come toward you while the bottom rotates away.

Y Axis On/Off ¢

~ .

Objects spun on the Y axis will rotate as if they are on a barber pole: The
right side will move away from you, while the left side moves toward you. o

Chapter © - page 34

Vanish On/Off #

The Vanish feature make very interesting animations. If you set an object
to vanish 100% it become a small dot in the distance! Other settings will have
your graphics zooming in and out at you! All of these settings may be combined
with any other settings to produce fantastic results.

-Load Graphic—

The Basic 8 3D Animator uses two types of graphics. The first are Basic 8
brush files, and the second type are Print Shop graphics (3 block non—-Commodore
printer types). These may be loaded directly from Print Shop disks. No
conversion is needed because the Animator takes care of it. There is only one
limitation on your brush files—they can be no larger then 88 x 52 pixels. Use
you favorite drawing program such as Sketchpad 128 and load in Pict.Template-3D
to use for a guide. Monochrome brush files work best, but if you load: in a color
graphic remember that only the bitmap will be used.

Print Shop

You will be given a standard requester to load in a Print Shop graphic.
Since Print Shop files have no standard header such as PICT. or BRUS. you will
be presented with a full directory to select from. Loading in a non-Print Shop
file may cause your system to crash! Take note: If you attempt to load a whole
picture into a buffer waiting for a three block graphic, it is not going to fit!
To assist you in making the correct choice the sample pictures on Disk #2 are
prefixed with “pPS." meaning it is a Print Shop graphic. -

Brush File

As mentioned, this is any Basic 8 brush file which is no larger than 88 x
52 pixels, Please practice by using the 16K mode. Line art will render much
faster then highly detailed shaded drawings. When using the full 64k mode you
will need to give it some time. Remember that it must create 40 pictures pixel

by pixel. I have had pictures take as little as 12 minutes to as long as an
hour! . ’

® Main Menu

This selection will take you back to the MAIN MENU.

: Ok, so you are impressed with the spinning artwork. How is this done? Most
of the subroutines have been explained in this book. List the program to see how
the directory is read, the files are selected, and how the screens work
‘together. Once a graphic is on your screen each pixel is read. Your computer
will take some time to count to 4576. Each pixel that is turned on will be °
Stored in an X/¥ array. From this point on only these pixels need to be drawn.

Line art works fast because™only a fraction of ‘the 4576 pixels need to be
rendered, ' S : T -

The @ORIGIN command is then incremented by the setting you have chosen
previously. Because graphics are flat, a 180-degree spin can look like 360 when
played forwards and backwards. These graphics are drawn on a screen dot by dot.
The final product is a picture file that may be viewed with Basic Paint.

‘The animation is played by with a simple loop using the @OPY command.
Animation techniques will be explained in detail by Roger Silva in part two of
this book.

B8.PLAYER16K
B8.PLAYER64K

. These animations may be created and used in your own programs. :These two
pPlayer files are the guts of the system. You may run them to simply play back
an animation. List them and see how the loops work within each other. The
original concept for this idea came from Lou Wallace's B8.Fasthouset4k demo.
This subroutine is used with‘permission.

As with the other routines in this book you are encouraged to experiment
with these programs. You .could adjust the animator to create different size
files, or the player could repeat certain sequences fast, then slow. Make a
feature length movie with your WCR. Basic 8 is what you make of it!

Potpourri

‘Here are several additional bonus programs that show just how powerful
Basic 8 can be. Enjoy!

B8.Paint 128

You have heard a lot about how the 128 can paint using 128 oolors. This is
because each of the 16 colors can be mixed with the others using dithering. When
painting with these colors you may not have the freedom to paint with lines and
such due to the size of the c¢olor cells. The smallest paintbrush you have access
to is the size of the 8x2 color cell. The advantage of this is that you will
have.no color bleed since cells will not overlap each other. I came :upon this
unusual effect when I was experimenting with multicolored windows using
@CLEAR,170 which causes windows to be cleared with thin vertical stripes of
background / foreground colors. The smallest window I could make was an 8x2
color cell. It was obvious that I could then use the mouse and paint by opening
very small windows. (You would be amazed at what is obvious when you exist so

close to the edge of reality;) Later I used this same technique to create
Spectrum 128,

B8.ET Demo

This is an interesting animated demo using brush animation and multiple

screens. The animation 1looks smooth because the technique I used is not the "+. - - .

obvious way to do animation.” There are four monochrome screens used in this
demo. The logic behind the program works like this: Screen 0 is what the user is

Chapter 9 — Page 3%

viewing. The background scene is loaded onto screen 3, a hidden screen. The
background (screen 3) is then copied onto screen 2 (also a hidden screen). The
~ bike graphic is then overlaid on the scene. Once the scene is compiled it is
copied to the viewing screen. Think of the scenes as being created as a single
frame in a movie. With this demo the user never sees the graphic as it “drops

down" onto the screen, and the stars and moon are visible through the spokes of
_the bike tire!

gBB.Graph

This sales graph was created using three dimensional colored bars. The
techniques will be discussed in the second part of this book.

B8.Bounce

A simple bouncing ball demo using a sphere and the sbroll command.

B8.Dice

These dice use pointers to create an animated effect. A subroutine like this

could be used - in many types of computer games where the roll of the dice is
required,

B8.Donut-Spin

The 1light source on a toroid can be changed by cutting the object out as a
brush and flipping it with the @CBRUSH command. Using the @COPY command for
speed gives us a wobbling donut effect.

B8.4 Donuts

If you enjoyed the last demo, you will like this one four times as much!
Four donuts, all wobbling! -

B8.Spin Sphere

_ The same technique can be used on any of the Rylander solids. This demo
uses a spinning sphere.

B8.Graph/Text

Here is a challenge for even the most advanced Basic 8 user. Can you create
a Basic 8 graphic and display it on the standard text screen? Sure you can!

I have included this (and the next) demo to show that not everything in
Basic 8 is obvious. I will not explain this one in detail but for the curious it
involves reading byte data from a graphic (stored in a buffer!) and transferring
that to a character set also in a buffer. (Remember Graphics have bytes stacked
end to end, and a character set has 8 bytes stacked on top of each othert). Once
this is done it is a simple matter to use the @FONT command to display your new
80 column text graphic! For fun rename font-sphere to font.sphere and look at
it with any text program.

B8.Expand it

One unusual technique deserves another. Again this is a demo:. to keep
enthusiastic Basic 8 users thinking. Since a graphic can be converted to a
character set, and the character set can be displayed with proportional settings
on the X and Y axes, it stands to reason that you could enlarge any graphic
proportionally on both the X and Y axis. This is nice because the €ZOOM command
is only proportional when a graphic is enlarged 8 times. Run this demo and you
will see just how nice it will make an enlargement. I was so impressed that I
used this technique to create Poster Maker 128. It is the only-picture enlarger
for 80 column graphics. :

Chapter 9 — Page 38

HOW TO GET THE MOST OUT OF BASIC 8
Part II: ANIMATION

. INTRODUCTION

@ This portion of the book will deal primarily with animation using the Basic
8 language extension from Walrusoft. It has been divided into five chapters
which will address the various aspects of producing an animated sequence. A demo
-disk is also included with -this book that will more or less follow the

activities described in the text. You -are encouraged to first read the book, and]
then to follow along with the demo.

Chapter 10 will deal with the importance of proper planning and organization
of an animation project. In this section I will discuss how to achieve balance
and symmetry with your graphics. You will discover how to find out where you are
on the screen, and to know where you are within the program. The final topic of

this section will deal with developing aids to assist you with screen
presentation. :

Chapter 11 will discuss the wonders of the Basic 8 3-D graphic environment.
You will see how this can produce a feeling of depth and solidity within your
'graphics. The major 3-D commands will be explored: @ANGLE, EORIGIN, and @VIEW.
The difference between parallel and perspective mode using @DRWMODB will be
explained, with several examples of this provided on disk.

~Chapter 12 illustrates how to handle the numerous BRUS. and PICT. files
that are a large part of many animation sequences. Screen and buffer layout used

in the demo is detailed, and includes advanced techniques for managing large
amounts of data,

Chapter 13 describés the various methods of animating a graphic. The merits
of @00PY and @FETCH will be discussed, with examples provided on.the demo disk.
We will also explore the possibilities of animation using some of the other

Basic 8 commands, These techniques will all be brought together in the main demo
program on the disk.)

Finally, Chapter 14 will explore other presentation aspects; most notably
music and sound enhancements. Although this is not a Basic 8 subject, I believe

you will see how this helps to flesh—out your program and compliment its graphic
animations. '

-It is assumed that you have at least some knowledge of programming,
understand nested loops, and that you have read and understood the first section
of this book. I believe you will be amazed at the versatility and detail
available with the aid of Basic 8. Perhaps this will encourage you to try your
hand- at producing animated graphics. All you need is a little imagination!

Part II Introduction — Page 40

CHAPTER TEN
PLANNING YOUR PROJECT

tlave you experienced this scenario before: You have this wonderful idea for
an animation sequence. You sit down to the task at hand, and find, after many
attempts, that there are still bugs in the program. Perhaps your animation is
«jerky; or you can't seem to place the graphics where you want them. Do you £ind
yourself asking, “What the heck is going on?", the colors change, garbage
~appears on the screen, or some other unknown malady strikes your program. Maybe
*you have a good animation sequence, but its presentation could be better. If you
experience these types of problems then this book is for you! All you need is a
little planning and organization to help you know where you are in the program
and how your graphics will be manipulated and displayed on the screen.

We will begin with a quick review of the 80 ocolumn screen. You should know
that the screen is 640 pixels by 200 pixels. (Although with 64K VDC:RAM you may
have a wvirtual screen up to 1280x409, the monitor can only show 640x200 at a
time.) Each pixel is asymmetrical; that is, it is taller than it is wide. The
color resolution available in Basic 8 allows one foreground and one background
color per “cell®. These colors can be combined to produce 128 shades. from the 16
primary colors available. The color cell sizes (in pixels) are: 8x2, 8x4, 8x8,
8x16, and monochrome, : ‘ Lo

One of the most important things to remember is that many of the BASIC 8
commands will index your graphics to the nearest color cell. Regardless of where
you want to place the graphic, unless it happens to directly fall on that
intersection, the location is rounded up or down to the nearest ¢ell. This
action does not apply to monochrome! That's one of its advantages. It allows for
very smooth animation and scrolling sequences. Also, because there is no color
to manipulate, the execution time is accelerated within the program.

Unfortunately, you are only allowed one foreground and one background color for
the entire screen. :

This leads to the logical conclusion that if this “grid" is utilized,
things will become much simpler. Because all color cell sizes have the same
number of pixels across (8), there are only-80 locations that you can place an
object in the «x direction. (In the case of a wider virtual screen you should

only display in increments of 8 pixels). The same kind of relationship exists in
the y direction. . s ’

Depending on the cell size, the y axis locations will be in increments of
16, 8, 4, or 2 pixels. So if your location is NOT evenly divisible by 8 in the x
direction, or your location is NOT evenly divisible by the color cell size in
the y direction, it's a safe bet that you may experience problems. If they are
evenly divisible, then you are well on: your way to easier screen layout.

- Obviously there is an advantage to the 8x2 cell size—you can display four . _

foreground and four background colors in the same space as an 8x8 cell area

(which can only hold one foreground and one background color.) This size allows
for smooth scrolling in théy direction; plus you have 8000 locations where you
can place your graphics! (640/8 pixels in x direction, times 200/2 pixels in the
y direction = 8000). This “color resolution" of 8x2 pixels is becoming somewhat

Chanter 1N — Page 41

of a standard in the BASIC 8 community, so, it will be used for our discussions,
and on the demo disk provided with this book.

The only negative aspect of the 8x2 color cell is the minor fact that your
maximum screen size is limited to 640 x 546! I believe you will find this
adequate for most animation projects. Of course if you do require the additional
Screen memory, use one of the other cell sizes. Just remember; there will be a
reduction in the number of screen locations for your graphics, vertical

scrolling will be less smooth, and you will also experience a reduction in color
density. '

Graphic Balance

Now that you are aware of the importance of screen location based on the
.starting x and y coordinate of the color cell, it is time to discuss: the need
for balance and uniformity in screen presentation. Presenting the user with a
mishmash of text and graphics will never make an impression. Even if your
animation sequence is excellent, its presentation will be lost as the ‘viewer
tries to take it all in, not knowing how it relates or where to begin,

There are several ways to balance the screen. The first is also the most
widely used; Centering! Placing an object in the middle of the screen looks much
better than the upper left hand corner of the monitor. Whenever you look ‘at the
monitor, screen center is usually the first place you focus. ‘

- This works fine for an individual graphic or animation sequence, but what
about the full screen? In this case you should look at the screen as consisting
of four sections: Upper left,upper right, lower left,lower right. Take the time
to place your text and graphics around the center of the screen. Text or graphic
areas on one side of the screen should be offset by similarly proportioned areas
of text and/or graphics on the other side. If the area is small in the Y
direction, then it should also be centered top to bottom on the screen.

Of ocourse not all graphics or text areas will be capable of centering. If
this is the case then I have found that offsetting them towards the top of the
screen or to the left will provide the best looking display. After a while you
will be able to judge for yourself. If it "feels™ out of place, then<try.moving
it to another 1location. Eventually you will- see where it fits:ibest on the
screen. Just keep in mind to adjust to the next color cell location.. Remember;
its the little details which add up to a professional look!

A little restraint is sometimes called for. It is not necessary that every
pixel be turned on. Also, it actually detracts from the screen if you try to
cram in all 128 possible shades. Oh, it can be done! But it is the rare
occurrence when this looks acceptable. Avoid color clashes. When you are
deciding on your color choices for your program, try using a simple color wheel.
This handy item can usually be found in any art or paint store. It displays the
primary colors as well as the complimentary ones. o - :

128 shades! I know many of you are not aware of this capability with BASIC.
8. If you believed that you were limited to the 16 colors available on: the: 40
column screen then this is a wonderful surprise. :By combining.the complimentary- - -

Chapter 10 — Page 42

colors within the standard sixteen, you can produce ONE HUNDRED AND TWENTY EIGHT
colors or hues! The simple process that makes this possible is called dithering.
Because of the high resolution, you do not see the individual background or
foreground color but a blending of the two. It is the bitmap which contréls this
deception. In its finest state the bitmap is composed of a matrix of off and on

~ pixels. This can be represented as a series of 0's and 1's (where 0=off and
1=on). In this case an 8x4 pixel area would look like this:

* 01010101

10101010
401010101
¥10101010

It is hard to see -how this is accomplished within this book. By using @zooM
within a paint program written for BASIC 8, You will easily see the individual
pixels. It is a great way to study the shadings and detail in a picture. You can
learn a lot about the style and technique used by the artist.

Coarser textures can be achieved by using larger matrices such as 00110011,
but you will find that as the matrix increases, the colors blend less and you

begin to see the individual foreground and background colors in what I call the
checkerboard effect.

Dithered areas can be saved and stored on disk as patterns.using the
PATR.filename format. In fact, anything that is placed on the BASIC 8- screen can
be used as a pattern! Developing a library of various file types will make it
much easier to produce a graphic presentation. This is also true of program
subroutines that perform the different types of animations. There is.no need to

repeat the task of figuring out a routine, or drawing a dithered pattern every
time you wish to use it. :

Sometimes, when your co-ordinates overlap, there is a color change on a
part of the'bitmap. The last color selected or changed, alters a screen color
cell near the new graphic. This is known as color bleed! '

It is important to remember that a color cell has TWO colors active at one
time! Think of the background color as your canvas. If you have not turned any
pixels "N", then this is the color you will see. If a pixel is ON, this color
<can be thought of as laying over or on top of the canvas. Even though no pixels
are turned on in a color cell, the foreground color is very much present! The
easiest way to think of this is by saying that the foreground color is
transparent. You will not see it unless a pixel is turned on. It will however

still affect any other cell it may overlay when you draw or fetch a brush to
~ screen. co ' -

. Why do you sometimes lose the pointer in a drawing program? The pointer is

- not a sprite! It is a simple bitmap image that is placed on the screen as an
interrupt-driven graphic. The pointer color is derived from the foreground color ?
of the current cell it occupies. When it encounters a section of the screen
where the foreground coler covers the entire area, you loose the pointer. TIf
your paint program has a “compliment™ mode then you can use this, For your own
program application you would activate the complement element of the @DRWMODA -

Chapter 10 — Page 43

comnand. In this mode pixels are toggled; pixels on are turned off, pixels off
are turned on. In this fashion, you will always be able to see the pointer.
Because it is interrupt driven, it will always leave the bitmap intact as it is
moved about. You should deactivate the pointer when you plan to fetch a
BRUS.file as it may corrupt your bitmap when the BRUS is placed over a pointer
location. The affected area will appear reversed.

By following the information in this section, you should be able to conquer
what can only be described as some of the most annoying occurrences within a
picture or program.

Text Balance

The restraint you show with the colors also applies to the text shown on
the screen. Not only did you receive a diverse number of FONT. files-with BASIC
8 but, you are capable of obtaining many more with the font converter-located on
the editor disk. You can display any number of fonts on the screen at one time.
You also have the wonderful ability to display them in different sizes. A
character can be the regular eighty column size, expand it to forty column on up
to sixteen columns per character. You can also expand in the Y direction, up to

16 rows deep! On the other end there is even a 160 column character set that is
quite readable.

It is advisable not to mix to many font types on the screen af the same
time. Also, do not try to.achieve a different color or size for every:text area.
This tends to confuse the user and things usually end up looking jumbled. The
next time you pick up a magazine, take a look at the text layout and
picture/graphics positioning on the page. You will see that they follow the same
principles discussed here. : ’

Notice how they use columns to display the text. Column layout not only
looks better, but it is more readable. A two~column layout is optimum for the
screen but you can also have three columns at 25 characters per column and still
maintain a quality “"look"™. I also find that justifying both edges of the column
leads to a very clean and professional look. Justification means aligning each
end of a line with the respective ends of all other lines in the column. This
usually means that you will have to add spaces between some of the- words in
order to align the right edge. A good rule of-thumb is to not exceed. two spaces
between each word in the line. If you have to many spaces then trys re=wording
your sentence, or moving words up from the next linq. -

When you do mix text and graphics, the column layout will automatically’
partition the screen for locating your graphics. You can also center them in the
screen and wrap the text around them.- This method is good when you have a single
graphic that does not fit within a column width,

I hope you will begin to realize just how important it is to plan out your
project, and to stay organized. The next few topics we will discuss, to wind up'
this section, will deal with developing aids to assist you in screen layout and
organization. R) :

Screen Aids

Chapter 10 — Page 44

One of the easiest and most versatile screen aids to have can easily be
produced and printed in a matter of minutes. It is simply a grid that is drawn
. on the screen and output to your printer. Probably the best size of grid to use
is one that is 8x8 pixels. The apparent versatility becomes evident when you use
this grid to lay out text on the screen. Because the Basic 8 fonts are
- expandable in multiples of 8x8 pixels, it simply becomes a matter ' of
transferring the paper layout to the screen while still maintaining a balanced
.look in the presentation. I keep a huge file of xeroxed copies on hand for
instant use. A BASIC 8 screen printed out sideways on my MPS802 emulated printer
produces a copy that is very close to the actual ‘screen size! This is invaluable
#when I use it for sketching a picture and maintaining the proportions and
symmetry between the paper grid and the screen.

another grid I use only shows' the 80 ‘columns. I use this grid to lay out the
drawing I want to display as a graphic on the screen. Because I use the 8x2
color cell size, if I am off in the Y direction, then it is only a matter of
moving the graphic up or down one pixel row. :

One of the handy application programs on Disk #2 is called B8.MAKE GRID.
You can use this program to draw every conceivable type of grid. Experiment with
it and you are sure to find a grid that fits your purpose. Save the grid as a
picture file and you will always have easy access to it. It can be printed out
later when needed. The file PICT.GRID 8X8 on Disk #1 is pre-created to give you
a fast 8X8 grid to print out. - e

Now before you start drawing all over this grid; think about how you intend
to use it. The simplest function of the grid is to provide you with the X and Y
coordinates to load your graphics to. You can also use pieces of-paper that
approximate the text and graphic areas you desire when you lay out the screen.
These can be arranged and rearranged many times faster than by hit or miss
placement on the screen. I tend to use different colored pieces of paper to
represent the text and graphics areas. In this way, if I have similar sized
areas, I don‘t have to worry about mixing up the layout.

It also becomes easier to locate the center of a circle, or the n-n,yc{-—n

coordinates of boxes and lines. Remember to follow the grid when determining the
colored areas of the screen. .

* A grid can also be used when you want to draw freeform shapes. The easiest

way to do this is to place a plastic sheet over the grid. I suggest using the

. type sold for use with an overhead projector. Don't forget to get a couple - of
the special pens they use on the plastic. The ink can be wiped off with a damp
sponge allowing the plastic to be reused. ‘ :

Now its a simple matter of placing the plastic (which you may have to cut
to fit) against the glass of the monitor's screen. It can stay there usually by
- static electricity alone, but I like to use the sticky strip (less paper) from

one of those little sticky note pads. You can reuse these strips many times with'

columns.

-

minimal sticky residue. Just remember to index the drawing with the screen

Chapter 10 - Page 45

.

With this task completed you can now use the various drawing options of
your favorite paint program to copy, trace or whatever you want to call it, to
the screen. You can transfer complex pictures to the screen using this method.
Actually, almost any picture you place under the plastic can be traced and
transferred to the screen. This method is used by both amateurs and
professionals alike. It does not mean that it is the only method available. For

instance; as you get used to using a mouse, you will be able to freehand draw -

your graphic many times faster than the trace method. There are certain artists

who have become very proficient at this and can render a drawing faster than you
can imagine.

If you do draw freehand, then you can and should check your rendering
against a column grid. This will show you where there will be potential conflict
with other color cells, and you can make the necessary changes. Just remember,
it is easier to make changes to your outline sketch, than it is. to. change a
nearly completed picture. - '

There are additional screen aids that you can use to help in locating your
graphics. If you are using a black border with a black screen background, then

locating the screen corners can seem very difficult. When I first became . -

interested in drawing graphics, I found it very useful to develop a library of
PICT.STARTDRAW files. Several of these files were of the grids we spoke of
earlier. One that I used quite often consisted of nothing but a dot in each
corner and center of the screen. I also had dots at top and bottom of the screen

area that located the space between the text columns. The dots are - relatively

easy to edit out, and help in maintaining the visual layout of the screen.

Did you ever want to know exactly where the pointer was on the screen?
Wouldn't it be useful to point somewhere on the screen and know exactly what the
X and Y values were?

It's as easy as entering a line into the mouse/joystick pointer subroutine
of a program. As a mater of fact, there is already such a line in the BASIC
PAINT program that was supplied with the BASIC 8 package. - It is buried in a REM
statement in line 210! By removing the REM from the line, the mouse coordinates

are displayed at the bottom left of the screen whenever the icon strip is
visible.

Within your own programs you should display the nmi_bers where it won't
interfere with the graphic image. To display to the lower left just include this
line in the mouse/pointer subroutine: : ’

€iAR,254,0,192,1,1,2,STRS (MX)+" ":STRS (MY)

It is assumed that you are using MX and MY as the variables that hold the x

and y coordinates of the pointer.

As you become familiar with Basic 8, you will probébly develop even more:

useful methods to lay out and organize your graphics. The process of rendering

graphics will come more apd more easily to you. Just keep developing new aids as *

the need arises. Save and record these aids for future projects. It saves a lot

of time and decreases the frustration level if you can call upon previous work -

Chapter 10 - Page 46

to assist you. You have the added benefit of knowing exactly what to expect from
past experiences. The key is in maintaining the fun and feeling of creative
progress when you program and/or render graphic images.

For the purposes of this book, I will discuss how to produce animated
- Ssequences for a typical space type adventure. I chose a program of this type
‘because of its wide appeal and unlimited graphic possibilities. The demo on Disk

~ #2, titled “BS.MAINANIMATION®" incorporates most of the subjects discussed in
this section of the book.

* I will not try and explain how to come up with a story line or how to .
~ produce a game; that would require another book! You will see however, that a
well presented set of sequences can appear to follow a story 1line where none -
exists, With the demo disk youwill see the elements of a program come together -
with a display of simulated space travel.

The screen presentation in the demo is divided into three sections. The top
S rows will display the banner graphic containing the demo's title. The :
remaining section of the screen is divided into two halves, left and right. The
left half will be used to present the graphics, vhile the right hand side will
display text. Other graphics or text will be placed in other locations following
the principles of centering graphics for balance and unity.

The demo will display a banner graphic with the word “animation* spinning
into the picture at screen center. It will then scroll to the top of -the screen.
The lower screen will £ill with text, and an opening song will be played. You

will then be presented with the Main Menu where you can access any section you
desire. .

‘The graphics used in the demos are a product of imagination! You are
encouraged to produce your own pictures based on whatever concept you have. The

graphics in the demo were drawn with the aforementioned principles and -
techniques, ’

As you read the other sections you will see how the animation was

accomplished. In the next section we will discuss the three dimensional aspect

of Basic 8. You will discover how to use it to develop animation sequences of
your own. -

‘7 . Please keep in mind that the information contained in the following -
sections should be accounted for when planning your project. They are the nuts

and bolts of animation on the 128. Each section will require its own special
attention to layout and organization. '

Chapter 10 - Page 47

Chapter

10 .~ Page 48

CHAPTER ELEVEN
THE 3D GRAPHIC ENVIRONMENT

One of the wonderful things about BASIC 8 is the ability to draw three
dimensional graphics. How can you do this on a two dimensional ‘screen? Basic 8

introduces the element of perspective into the drawing to give you a distinct
impression of distance.

For a simple review, the elements that make up the three dimensions .on the
, Screen are:

Length - How long or wide an item appears
Height - How tall or high an item appears
Depth -~ How thick or deep an item appears

You are familiar with the X (length across) and Y (height up and down)
Coordinates of the screen. The third dimension is referred to as the 2 (depth
in-out of the screen) coordinate. The effect is that of a picture shrinking
into, or expanding beyond the screen boundaries.

Pers@ive

The main jingredient of the third dimension is the vanishing point. As an
object is drawn closer to this point it becomes smaller and smaller until it {s
but a single point. Conversely, as it is drawn further away it gets larger and
can be made to appear as if you are traveling right through it! This can allow

for some interesting animations. A line drawn towards the vanishing point will
follow the Z axis. ‘

In Basic 8 the 1location of the vanishing point can be set by the
programmer. This point 1literally becomes the center of your graphic universe.
The points you specify can even be off the screen! The one thing to keep in mind
is that when Z=0 that point is considered to be on the same plane as the monitor

Screen. Negative ‘coordinates lead out of the screen while positive numbers sink
in.

. The wondrous command that makes this all possible is @ORIGIN. The syntax
. for the €ORIGIN command is: o ‘

EORIGIN, Center X,Center Y,Center Z,Vanish X,Vanish ¥Y,Vanish 2
Lets take a look at some examples.
@ORIGIN,320,100,0,320,100,0

. Structured this way, the command sets the center of rotation and the
vanishing point to the center of the screen. an object drawn and rotated around’
these coordinates will remain ‘stationary on the screen as it rotates without
-distortion from the Z -axis. If the object is rendered with its center drawn’
outside of these coordinates, the object, when rotated, will travel around. the
specified center. Depending on the coordinates supplied, the object may be drawn

Chapter 11 - Page 49

off the screen out of view. However, if well planned out, you could obtain an
effect such as that of a moon or spaceship orbiting a planet.

€ORIGIN,320,100,0,640,0,640

As structured, the center of rotation is set at X=320, Y=100, . Z=0. The
vanishing point is set at the upper right hand corner of the screen at X=640,
¥=0, and Z=640 pixels "into" the screen. When you draw graphics, the nearer to
this number, the smaller your object will appear. If the object is rotated, it

will still rotate around its center but will appear offset towards the varushmg
point.

For added depth you can even place the center of rotation and the varushmg
point off the screen! Just remember that if you want to rotate your: object, it
will rotate around that center, and your object will eventually disappear from
view. Unless this is the desired result, once the program begins you will have
to abort it (or wait until the drawing ends). By using the TRAP command within
your program, you would be able to exit this type of problem by pressing the
Run/Stop key. Trapping errors is a valuable aid when programming animated
objects. You will find that all of the demos have this handy feature at the
beginning of the program.

What about using a straight drawing command like @LINE? A good example of
perspective can be shown by dramng just two lines! On the demo disk -‘there is a
program called B8,HEADER. This is a program module that sets up the Basic 8
environment and was discussed back in Chapter 2. I use a file such as this when
I begin to write all of my Basic 8 programs. It really saves time; there is no
need to retype the same “setup" lines you will be using in every Basic 8
program, -

Load B8.HEADER and enter these lines:

- 110 @ORIGIN,320,200,0,320,0,1000: rem new rotate/vanish points
. 120 €LINE,300,200,0,300,0,1000,1: rem draw left line

130 @€LINE,340,200,0,340,0,1000,1: rem draw right line

140 SLEEPS: rem wait S seconds before ending the program

In Basic 7.0 this would only draw parallel lines-from the bottom:to the top
-of the screen (and only on a 40 column screen). But, because of the-Z coordinate
and the ability to set a vanish point, the lines appear to converge upon one
another; much like the view you would get looking down a long, straight stretch
of railroad tracks. That is how perspective works. Long lines in real life, such
as roads, railroad tracks, and tall or long buildings, all appear to get smaller
. and seem to head for a point as they continue into the distance.

A special note: If you have the earlier release of Basic 8 (one purchased
- before December 1988) then you will see parallel 1lines when you. run this
program. The original release had a bug in the Z axis plotting function. This
bug also affected other 3D commands as well. The upgraded version of Basic 8,
~ available from Free Spirit Software, has fixed this bug. Small fixes such as
~ this, along with several companion programs, -makes this: upgrade well worth :
purchasing. o s

Chapter 11 - Page S0

If you were wondering about the @ORIGIN command in line 90, the last command
given will supersede the previous one. As a matter of fact, you can change this
command as often as you like. This is useful if you are drawing something like a
city street scene. For example, you could produce a perspective picture which

would appear like you are looking down two streets from the corner of a
building.

Now lets try this again using the @BOX command. Just add these lines to the
programs

150 €CLEAR,0: rem clear the screen for the new activity

160 esox,120,0,0,420,100,0,0,0,1: rem draw box where Z=0

170 esox,120,0,500,420,100,500,0,0,1:rem draw box where Z=500
180 €s0Xx,120,0,900,420,100,500,0,0,1: rem draw box where Z=900

190 sleepS: rem wait five-seconds :

As you can see, the only values that have been changed are the Z values in
each 1line. The X and Y values remain the same. In 2D this would produce
identical boxes; one on top of the other. With the 3D environment however, the
boxes are placed along the Z axis, and as we discussed, the closer to the

vanishing point, the smaller the object appears. All this is made possible with
€@ORIGIN, .

@ORIGIN is active when the Zview element of the @DRWMODB command is set to

0. 7To see the change you would experience in parallel mode, set- the Zview
element of €DRWMODB in line 90 to 1. : .

Now run the program. You will note that, because there is no vanishing
point, the lines remain parallel. However they do not seem to travel along the
expected route at all but run off to the right hand side of the screen. This is
because, when in parallel mode, the drawings are offset in the Z axis. The boxes
remain the same size and also run off the screen. More on this will be discussed
later when we review the differences between perspective and parallel drawing.

You should save this short program for future use. It is a visual aid that
will help you become more aware of the effect @ORIGIN has on some of the Basic 8
3D commands such as @BOX, @LINE, @CIRCLE and @DOT. I can not stress enough the
importance of hands-on:experience: when: it comes to using, and becoming familiar
. with BASIC 8. Actively typing in a.program, and modifying its commands will
- teach you more than any book. It is -an important part of the learning process.

. Rotation
Now that irou have a gr%sp of perspective mode, it is time to discuss the

additional manipulation of your graphics with the @ANGLE command! This command
is used to rotate your drawing. Superb animations can be produced in this way. -

With the @ANGLE command you can rotate your drawing on any one or a

combination of all three axes; X, Y, and Z. If this wasn't enough, you can also
rotate in one of 6 sequenges: XYZ, XZY, YXZ, YZX, 2ZXY, ZYX. Isn't that amazing!

Chapter 11 — Page 51

The sequence of rotation that you use will produce a much different result,
even if .you are using the same data. You are allowed to rotate by degrees
(called angles in the Basic 8 manual), from =360 to 360. When you specify
negative degrees, the result is that of your object rotatmg clockwise. Positive
numbers produce a rotation counter-clockwise.

Some people have a difficult time knowing how a rotation will look. When
you specify a rotation along the X axis the object will appear to flip towards
you until it is upside down. When you specify Y axis rotation your object will
seem to spin around and to the right 1like a top. The Z axis is a little
different. The rendered graphic is rotated counter~clockwise. The presentation
of the graphic does not change. The effect is similar to the one you would

receive if you placed your graphic on the center of a record player turntable,

and then (looking down on it) rotated the turntable counter-clockwise.

It is important to realize that you are drawing just one increment of a
rotation each time the command is used. This individual rendering is sometimes
called a "frame". To produce an animated sequence you will have to save each one
of these renderings and combine them into a "movie® of the action.

within the B8.MAINANIMATION demo program you will get to. see examples of
_displaying an object that makes use of the vanishing point and the @ANGLE

command. The exact method used to produce the animation is explained in Chapter
13. .

There 1is also a Bonus program included on the demo disks that makes good
use of these commands. Look for the program B8.3D-ANIMATOR. With this handy
application you can rotate and/or reduce Print Shop graphics or any 88 x 52 size
BRUS. structure. It even produces a little movie of the animation that occurs
and saves the results in the form of a PICT. 3D-screen for later recall.

For now we will concentrate on the mechanics’ of producmg an individual
frame. .

Two dnnensxonal objects can be animated in three dimensional space with
remarkable results. In “"BS.MAINANIMATION® demo on disk, you will see several
examples of this. In the begiming of the demo you see the word “ANIMATION"
spinning into view. Later in the demo a satellite, and a planet grow in size-as
you appear to approach them,

In the case of the spinning word, not only was it drawn farther and farther
away from the vam.shing point in each frame, but the Y axis angle was

incremented also, giving it the spin you see. The coumand that produced thls
spin was of course @ANGLE.

In the manual you received with Basic 8 there is a very nice demo that you
can type in that shows.the rotation of a 1line around the Z axis. I would
encourage you to type in all the programs in the manual; not only is this a good
learning experience but you can also modify the programs to see the results of
changes. For the rotatmg line program, Jjust move the variable AN to the X and
then Y element of the-comuand. Try applying the same variable using the various
combinations of X, Y, and Z . Making simple changes to programs such as these

Chapter 11 — Page 52

will increase your awareness of how altering various commands will effect the
outcome of the rendered graphic. As your knowledge base increases you will be
able to produce more complex and detailed graphics and animation.

Creating a Cube

Lets look at the rotation of a three dimensional rendering. Perhaps the
simplest one is the cube. This solid has only eight points to keep track of. Tt
" is also easy to visualize. I determined the eight points of the example cube by

laying out the values on graph paper. I also used this drawing to locate the
4 center of the cube. This is necessary to keep the object in the same place on
- the screen as each frame is drawn.

If you do experience difficulty visualizing a cube, then perhaps you shoﬁld
make use of a model. A model is very useful, especially when you wish to produce
a complex object; one that has numerous angles and planes. Having a visual

reference such as this can be an enormous help, both in plotting, and as a check
against the rendered drawing. :

For a model of our cube, ybu could use a die from any board game. If you do
not have access to a pair of dice, then you could make use of any rectangular
object. The only difference is that a cube has sides of the same length. aAny

geometry book should also have examples of cubes that you can reference for this
discussion or for your own projects. :

Notice that the cube (or rectangle) has only eight corners where the edges
intersect. .These corners are the points you must locate on the screen in order
to plot the cube. Also notice that there are 12 edges that connect the corners
and make up the six sides. These elements all come together to give the cube its

shape. Complex solids ‘as well as curved structures are plotted in a similar-
manner, N :

Out cube will be drawn on paper so that it will be 80 units long, 80 units
tall, and 80 units deep. These units can be in any scale on the paper; 1/8~ and
1/4-inch increments will work fairly well. With a 1/8-inch per unit scale you
would draw an object 10 inches square. On the screen the units we will use are
the pixels themselves.

We will draw a cube that is 80 pixels across in the X direction. Because of
the asymmetrical pixel, you must adjust the Y direction accordingly. Probably
the easiest way is to evoke the @SCALE command. There are two scale sizes

- available to you with Basic 8. For compléx structures this is the optimum way to
go. However, I wish to show the effects when no scale is used.

You will have to make the appropriate conversions to obtain an initial
symmetrical looking rendering. The formula to accomplish this is relatively
simple. I find that making the conversions as I lay the object out, and noting
them on the paper simplifies the task, and gives me ready access should T wish
to make. adjustments or corrections. As you will see, this is fine as long as you
don't want to rotate the data. ‘ s ' '

Chapter 11 - Page 53

To find the correct distance in the Y axis multiply the distance you plotted
on paper by .39. For our cube the Y distance is the same as the X distance on
paper. Thus our screen distance becomes 80 times .39 or 31.2 pixels 1long. If
this number is a fraction it should always be rounded up to the next whole
number (in this case 32). You will need to make the same calculation to
determine the Z axis or depth of the cube. The result is also 32.

When this type of drawing is rotated you will see the benefit of using
@SCALE when rendering a 3D solid. The conversion is discussed here for those who

have wondered how to produce a symmetrical rendering of an object without the
aid of @SCALE. S)

For this exercise, you should have a fresh copy of the B8.HEADER program in
memory. You will be adding several lines that will result in a demo.that you can
save for your collection.

Our first task is to locate the center of the cube using @ORIGIN. We will
be placing the cube in the upper left portion of the screen. Because we want the
cube to rotate on its own axis and remain in the same spot on the screen without

a visible offset along the 2z axis, the vanishing point will have the same
coordinates as the center of rotation. .

With the “B8.HEADER" program in memory, type in the following line:
110 @ORIGIN,132,44,0,132,44,0

This places the center of the cube at X=132 pixels, Y=44 pixels and Z=0.
Remember that wheri Z=0 it is considered on the same plane as the screen, Because
we are using a cube, it is fairly simple to place the cube around this center.
We will need to find a total of six coordinates in order to plot our cube. They
consist of the left and right X coordinates, the top and bottom Y coordinates
arnd the in and out Z coordinates.

Why so few? Becduse Basic 8 rotates the data for you. You should always
endeavor to plot an object as simply as you can. Look back at the drawing you
made for this cube. In its simplest form it looks like a two dimensional object;

a square., The X and Y coordinates of the "front" and “back" of the cube are the .

same, It is the Z axis that will give your object depth!

We know that the cube is 80 pixels wide, so the X ocoordinates will be
located 40 pixels on each side of the center X coordinate (80/2=40). Therefore,
because our center X is 132, the left X coordinate will be 92 (132-40=92) and
the right X coordinate will be 172 (132+40=172). '

In the same fashion you can derive the upper and lower Y ocoordinates. The
center Y of the GORIGIN command is 44. The calculated Y height is 32. We know
that the upper Y coordinate will be 28 (44-32/2=28) and the lower Y location
will be at 60 (44+32/2=60).

The Z coordinate will produce some negative numbers. The depth of our cube

is 32 pixels. We will therefor be plotting 16 pixels out of, and 16 pixels into
the screen., Because we have set the center Z axis at the screen plane of 0, our

Chapter 11 - Page 54

T

“out" Z coordinate will be -16 (0-16=-16). The "in" Z coordinate will be 1jg
(0+16=16). ‘

We now have all the coordinates we need to draw our cube! The eight X,Y,z
data points are:

92,28,-16 —~ front (out) upper left corner
92,28,16 ~ back (in) upper left corner
172,28,-16 - front upper right corner
172,28,16 ~ back upper right corner
92,60,-16 ~ front lower left corner
92,60,15 - back lower left corner
172,60,-16 - front lower right corner
172,60,16 - back lower left corner

Now it is a simple mater of using the @LINE command to connect the points
that form the 12 edges of the cube. :

. &dd these lines to B8.HEADER:

150 €LINE,92,28,-16,172,28,-16,1
160 '€LINE,92,60,-16,172,60,-16,1
170 €LINE,92,28,-16,92,60,-16,1
180 €LINE,172,28,-16,172,60,-16,1
190 €LINE,92,28,16,172,28,16,1
200 €LINE,92,60,16,172,60,16,1
210 €LINE,92,28,16,92,60,16,1
220 €LINE,172,28,16,172,60,16,1
230 €LINE,92,28,-16,92,28,16,1
240 €LINE,172,28,-16,172,28,16,1
250 @LINE,92,60,-16,92,60,16,1
260 €LINE,172,60,-16,172,60,16,1

Please use the line numbers stated. Additional lines will be added between
them later in our discussion. '

In order to view the rendered drawing enter this line in the programs

, 900 GET A$:IF A$="" THEN90O

This line will wait for a key to be pressed before the .- program ends. It

. gives you as much time as you want to view the rendered drawings.

Now go ahead and run the program. ’ You will see a box drawn in the upper
left of the screen. But wait! It does not look like a cube, just a square. This
is because it is a head on view. If we were to rotate the cube we would see the
other sides. Lets rotate the object on both the X and Y axis. We will rotate 60
degrees on the X axis and 165 degrees on the Y axis. To do so enter this line in
the program: _

130 @ANGLE,60,165,0,0 -

Chapter 11 - éage;SS

Try running it again. We now have a cube! Actually we always had one; its
the rotation of the rendering that produces the view you see. You can enter a
variety of values to the @ANGLE command and see the results.

In Chapter 10 I stated that a drawn object looks much better if it is
located in the center of the screen. I will show you how easily this can be done
using the same data points and @LINE commands that you have already entered.

Just enter this line in the program:

120 @WINDOWOPEN,190,50,200,100,0

When a window .is opened in BASIC 8, all drawing commands trénslate to this
window. The X (190) and Y (50) coordinates becomes pixel coordinates X (0), Y

. (0). You will now see the cube drawn in the center of the screen! As a matter of

W

fact, as we continue, you will see how you can use the window command to place
your renderings in numerous locations of the screen. '

As you experiment with these commands, you will begin to develop an
understanding of the complexities of the Basic 8 language exterision, and the
three dimensional environment. Save the program you have just typed in as
B8.SHORT DEMO. We will be using it again.

You have seen how perspective affects your renderings. Now we will look at
parallel mode. As I said earlier you can activate parallel mode buy changing the
Zview element of €DRAMODB to 1.

Parallel Mode

When you select parallel mode, €ORIGIN will no longer affect your data.
There is no vanishing point, but you will still have to enter: the X or Z
coordinates if you want to have an offset view of your rendering. Parallel mode
allows for a simple rotation in the Y axis only. You will not be able to
accomplish multi-directional rotations as you can with perspective mode.
Parallel mode is a simple rotation around the Y axis. If you do wish to rotate
the graphic, you will be confined to the original location on the screen; the
ability to rotate around a definable point is lost. ‘

-Do you recall the @LINE demo we discussed earlier? At that time I had you
draw a pair of lines from bottom to top of the screen. In perspective mode the
two lines came to a point at the top of the screen. When you were instructed to
activate parallel mode with @DRAMODB the lines remained parallel, but were drawn
off to the right of the screen. This is essentially the default direction of the

. Z axis. Because the ending Z coordinate was 1000, the lines were -offset towards
" this point. : :

Did you also try the €BOX commands at -the same time? If you did, then you
noticed that the boxes remained the same size but were drawn off to the right as
the Z increment increased. These examples are perhaps the best way to see how
the Z axis affects a two dimensional rendering in parallel mode. :

Chapter 11 - Page 56

@ANGLE will also affect the rendering of a graphic in parallel mode. The
effect is similar to a perspective drawing. When you rotate a cube in
perspective mode the original angles you set with @ANGLE will remain at the

' position set. The simple rotation will occur along the Y axis only.

i How can you rotate in parallel? Basic 8 has a simple command that allows
you to do this. By using the E@VIEW command, you can, in effect give the
rendering the appearance of spinning on the Y axis. To see a demonstration of

‘ this you should load in the program you typed in earlier called B8.SHORT DEMO.
You will be adding the following lines: ’

*126 -
140 GOTO300
270 RETURN .
300 @CHAR,254,10,160,1,1,2,"perspective" '
310 @WINDOWOPEN,O0,50,200,100,0:rem open new window
320 FORI=0 TO 160 STEP16:rem increment x 16
330 @CLEAR,O:rem clear the window)
340 @ANGLE,60,1,0,0:rem increment y by the value of i
350 GOSUB1SO:rem draw cube
360 SLEEP1:NEXT:rem wait 1 a second and draw next increment
370 @WINDOWCLOSE:SLEEP3:rem close window and wait 3 second
380 : '
390 @pRWMODB,1,0,0 '
400 €xiAR,254,55,160,1,1,2,%parallel"”
410 @WINDOWOPEN,320,50,200,100,0:rem open new window
420 FORI=0 TO 160 STEP16: rem use same increment
430 GCLEAR,O:rem clear the window
440 @VIEW,I:rem increment view angle by value of i
450 GOSUB1S0:rem draw cube
460 SLEEP1:NEXT:rem wait 1 second draw next increment
470 @WINDOWCLOSE:rem close window
480 @DRINMODB,0,0,0:rem reset command

910 IFAS="r"ORIFA$="R"THEN@CLEAR,0:GOTO100:rem if r is pressed the program will
be repeated

This program should be saved as B8.CUBE DEMO.

& Lines 300-370 draw a cube in rotational increments of 16 degrees per frame.
Lines 390-470 show the rotation when parallel mode is used. In each case the Y
axis is the rotational axis. In both subroutines ¢+ A loop is used to increment
the rotational values of the various commands.

. As each graphic is rendered you will notice a distortion in the symmetry of
the cube, This is because we are not using @SCALE. As the graphic is rotated,
the Z element appears shorter as it is translated to the two dimensional screen.

. This distortion is less apparent in parallel mode due "to the way it is
presented. It is a change based on how the object looks as you move around the ’
origin, rather than how-the object looks as it rotates around its origin.

~. .

Chapter 11 — Page 57

If you were to deactivate parallel mode in line 390, you would produce

identical renderings of the cube. @VIEW will only work when parallel mode is
activated. :

Try substituting the variable I for the X or Z elements in the @ANGLE
command in line 340. Notice how these changes affect the rotation. Rotation
along the X and Z axis is not possible in parallel mode. If you wish to present
an X or Z view it must be done using @ANGLE before you render it with @VIEW.

I encourage you to modify this program in as many ways as you can. The best
way to understand how these commands work is by studying the numerous variations
possible. Eventually you will know which mode of rendering 3D graphics will work
for your particular situation. I cannot stress enough, the importance of hands-

on experience in developing your understanding of the Basic 8.3D graphics
system. : .

Suppose you want to produce an accurately proportioned rotation of the
cube. This is possible by the use of @SCALE. For most applications @SCALE,l is
sufficient. You will have to replot your data based on the new scale values.
With @SCALE,]1 the 640X200 pixel screen is recalibrated to represent a logical
screen that is 640X512! Using this scale, you do not experience the distortion
caused by the asymmetrical pixel as an object is rendered.

You don't have to make allowances for the pixels before you generate your
data. Basic 8 takes care of this for you. If you wish to produce a cube with 80
units to a side, that is what you use. Length X=80 and height Y¥=80 will produce
a box that is proportional. If Z=80 then you have a cube.

To render the cube in the center of the screen you would use:
@ORIGIN, 320,256,0,320,256,0.

If you had set your origin to:
€ORIGIN,320,100,0,320,100,0

before @SCALE,]l was used, don't worry. Basic 8 will make the necessary
adjustments for you. You must,however, remember to place your data around the
new origins if you wish to keep the object in the center of the screen.

There is an anomaly that I must report. When using @SCALE,1 I have
experienced difficulty in keeping an object stationary on the screen as it is
rotated. When I set the origin to the center of the screen and then plot the
data around the coordinates, all:seems fine until I try to rotate the object on
the X or Z axis; the Y axis does not seem to be affected. When I attempt to
rotate on the X axis, the cube is rendered closer and closer to the top of the
screen. The same type of anomaly occurs with the 2 axis.

The error seems to occur only when @SCALE is used. It may not occur with
your copy of the BASIC § operating system. If it does occur, Try making this
adjustment: I have found that you must-set the Y origin and the Y vanishing

point to 640 (@SCALE,1l)! Just remember that you must also plot around the scaled

Chapter 11 - Pége 58

origin and vanish point (Y=256), if you want to keep the cube renderings in the
center of the screen. I have included a demo program on disk called, B8.SCALED

~ CUBE. When you list the program, you will see how I plotted the demo cube around

the center of the logical screen (where x=320; y=256; 2=0), but the @ORIGIN
command shows the modified Y:

" ORIGIN, 320, 640,0,320,640,0.

Do not get discouraged by this anomaly. It merely proves that the authors
of Basic 8 are truly pushing the Commodore 128 to its limits!

To see the different rotations available with a scaled cube you are.
encouraged to change the values in line 340. In lines 341 and 342 there are some
suggested values to use. Try these, and any other combination you may think of,
Remember: Patience, practice, and program experimentation are your keys to
understanding the complexities of this marvelous graphic system.

In Chapter 13, Animation Details, you will see how to “capture® each
rendered frame to use in producing a "movie" of the animation! :

Chapter 11 — Page S9 :

Chapter 11 - Page 60 :

CHAPTER TWELVE
BUFFERS AND SCREENS

This chapter addresses the important tasks of data placement within the
various RAM locations within your computer. You may have already experienced the
frustration of setting up what you believe to be an organized program, only to
find that you are not seeing the display you desired, but strange symbols and
"garbage on the screen. 1In the next few pages I will explain how to organize the
memory and screen layouts so you can minimize this occurrence. We will deal
gprimarily with the RAM within the computer itself. Those of you who own an REU
~ (Ram Expansion Unit) will be able to circumvent many of the problems experienced
by placing your structure files in this device. The topics discussed within this

section will address the organization you need when using the computer's RAM and
no REU. :

Basic 8 is able to address as many as 10 "banks" of RAM to store its data
structures. These banks are referred to as buffers. Within the computer itself
there are two buffers available; 0 and 1. The additional buffers can only be
accessed if you have an REU installed. The 1700 REU with 128K of additional
memory, can hold two additional buffers (%2 and #3) as RAM. If you were lucky
enough to purchase the 1750 REU than you have 512K of additional memory. This
provides you with 8 additional buffers of 64K RAM (#2-£9). '

When you use internal banks 0 and 1 you must remember that these* locations
are also used by your program and the Basic 8 operating system! bank 0 is used
to hold your program and the Basic 8 operating system itself. bank 1 is used to
hold . any variables and strings generated by your program. This reduces the
available RAM considerably. When you first turn on the computer you are
presented with a message that says in part, %122365 bytes free®. But, if you
have booted up Basic 8, there are only 100861 bytes free. 21504 bytes have been
used to house the Basic 8 operating system alone! As you can see, having the
external RAM expansion installed gives you access to free, undisturbed RAM. You
will not even have to touch the resident RAM.

To further see the actual bytes available, just type these lines in direct
mode (after the Basic 8 editor is installed):

FRE(0) (preés return)
PRINT FRE(1) (press return)

' These two lines are basic functions that return the number of bytes free
within the two main banks of RAM. When you type FRE(0) the number returned
should be 36605. This means that there is approximately 35k left to hold your
program in bank 0. The FRE(1l) returns 64256 or approximately 63k of wvariable
Storage in bank 1. Because the average program does not require this much
. Storage, it is the optimum location to declare as your buffer area.

ilsing the FRE(n) BASIC function with the programs you are developing . will

keep you informed as to. the memory remaining and the memory size of your
program. I feel it is a much under-used command function. We all know what its

Chapter 12 - Page 61

like to get an “out of memory error" on the screen. This function can help make
you aware of the problem before it occurs.

Buffers

The Basic 8, @BUFFER command allows you to declare a buffer to start at any
location within a specified bank. You can also declare the size of the buffer,
It is unwise to declare a buffer size larger than what is available. You will

probably lock up the computer, or at the very least, end up with nothing but
garbage on the screen. ‘

Try to stay within buffer 1. The only exception I make is when I wish to

use EPAINT to color my graphlcs. Because €Paint requlres a stack area to perform
its task, I declare a buffer in bank 0 that is 1K in size for the work area. The
syntax for this command is:

@BUFFER,0,57343,1024

It :is the same one used in the Basic 8 manual within the EPAINT command
definition. Using this buffer, all @PAINT commands will use thlS format:

@PAINT,X,Y,O ¢57343,1024

€PAINT also works with scaled coordinates! In this way you can easily paint
your rendered 3D graphics.

As we saw earlier, bank 1 has 64256 bytes available for storage of your
structures. You can't use all of this memory or there won't be room for the
program strings and variables. However, it is possible to use as much as 48K for
your structure storage. Obviously, if you are using large or numerous arrays,
you will be further restricted, but, you can still do a lot with 32K, or even

16K of memory. 16K is the amount of memory required to store a 640X200
wmonochrome screen. - : .

To estimate the size of the buffer needed you can either calculate the
number -of bytes in the structure, or convert the number of disk blocks the
structure uses. Just remember that these are rough calculations; the actual

memory requirements can be affected by other things such as a BRUS. structure
that was saved as a compressed file.

Lets look at roughly calculating the size of a BRUS. or PICT. structure.

Unless it is in monochrome, you will have to calculate both the bitmap and the -

color of the structure. For our example the brush is 24 pixels wide and 200
pixels tall. The formula for calculating the bitmap is:

(X/8)*Y

For our example the bitmap is (24/8)*%200 = 600 bytes. If this is &
monochrome structure then you can continue to add in the other structures you
wish to store in memory. To calculate the color requlrements the formula is:

((X/8) *Y) / sizecode

Chapter 12 - Page 62 .

e

¥

Sizecode is the color resolution the graphic was rendered with. Monochrome
screens do not need a sizecode. The code numbers for the other resolutions are:

8 X 16 -~ Sizecode = 16
8 X8 ~ Sizecode =8
8 X4 -~ Sizecode =4

3 X2 -Sizecode =2

As you can see, they are easy to remember. The sizecode is the same as the
color cell Y size. =

In our example the color cell is 8X2 (therefore the sizecode is also 2)
which means that we need ((24/8)%200)/2 or 300 bytes for the color. Now, to
determine the total number of .bytes needed, add the bitmap number (600) to the
color number (300) to find the answer of 900 bytes (600+300=900.)

. When you estimate the amount of memory required by a structure file on disk
you can estimate that 1K of memory will be used for every 4 disk blocks. Just
add up the total number of blocks and divide by 4.

You can easily check your estimations later when you are developing a

program. I wusually place this 1line in the loop that loads - the various
structures:

€@CHAR,254,2,96,2,3,2,str$ (ad)+"
Because the variable AD contains the next load address in your buffer, it

will print this value on the screen. I usually erase the line when it is no

longer needed. With it you can find the memory requirements of any structure you
'load into memory. : _

Once you have determined the size of your buffer. It is easily set with_the

@BUFFER command. For our example we will use a 16K buffer and the. command will
look like this: A

@BUFFER, 1,1024, 16000

This sets aside 16K for our use..

o

.- Why start at 1024? Due to the architecture of the 128, the area of memory
below 1024 is accessible by all configurations of ROM/RAM banking. It ocontains

"such things as the various pointers and stack areas that are used by the BASIC
operating system. If you were to attempt to use this area your data would be
corrupted and the computer would probably lock up. .

You must protect this buffer area from being overwritten by the
accumulation of variables the program generates. Because BASIC will return’ to
the start of variables when it reaches capacity at the top, your structure will'
probably be corrupted. To prevent this from happening, you need to move the
start of variables pointer to a value above the last address of your buffer.-

Chapter 12 — Page 63

There are two pointers that together contain the address for the start of
variables. They are contained in locations 47 and 48 within the computer's

memory. Did you notice that these pointers lie within the area below 1024 that
was discussed earlier?

The normal value for register 47.is 0, and for register 48 it is 4. This
produces the hexadecimal address of $0400. Register 47 is the low byte and 48 is
the high byte of the address. This hex address ($0400) has a decimal value of
1024! Through the use of pokes, you can change the values of these registers and
move the start of variables wherever you wish. The pokes should be used before
you activate-the Basic 8 graphics system with the @WALRUS,n command. To obtain a
16K buffer you would enter this line:

POKE47,0: POKE48, 68:CLR

For a 32K buffer you would use:
POKE47,0: POKE48,132:CIR

And for a 48K buffer it would be:
POKE47,128: POKE48,191 :CLR

In the case of the 48K buffer, the start of variables moves up to address
49024! Register 47 holds the lo bite value of 128 (vhich equals - hex $80).
Register 48 holds the high bite of 191 (which. equals hex $BF). Together these
produce the address of hex $BF80. Converting this address to decimal produces
the number 49024. Remenber ‘to subtract the value of the untouchable area ending
at 1024. This gives a total usable buffer of (49024-1024) = 48000 bytes.

Once you have protected the buffer in memory, you can use it to store your
structures. I recommend using - the structure numbering system outlined in the
Basic 8 manual., Load in the FONTS first, then the LOGO., PATR., and BRUS.
Structures in that order. This buffer can also be used to @STASH a structure
generated in a program. :

Advanced users can further utilize the buffers by splitting. them into
several addressable locations. This becomes useful when you want to overwrite
sections of the buffer as you @STASH, G@LSTRUCT, or otherwise process various
Structures through the -buffer. This becomes most useful when you are saving

BRUS. areas of the screen to memory for temporary storage. Without partitioning
the buffer, you will quickly run out of -room. ' ,

This partitioning . is: accomplished with the variable AD. This is the
variable Basic 8 uses to locate the next address in memory with the @SEND
command. If you dimension an array with this variable you can produce as many
elements as needed. For instance: DIM-AD(3) will produce three areas where you
can store structures. AD(l) should be used for FONT structures. The initials
value of AD(1) would be 1024. AD(2) could store PATR. or BRUS. structures. The
initial - address of AD(2) will have to be calculated based on the last address

needed for FONT structures. AD(3) -could be used to hold transient BRUS. or other
structures. :

Chapter 12 — page 64 .

How do you get these addresses? Remember this command we discussed earlier?

@CHAR,254,2,96,2,3,2,STRS (AD)+"

When you develop programs you always need tools to help you along. This
simple line is one of my favorites. I use it to determine all the addresses for
every structure in the buffer. In this way, after all the FONT. structures are
loaded, I have the address for the next partition on the screen ready to record.
When I no longer need the information, the line is deleted from the program,
(Actually I usually leave it in a REM statement should I wish to upgrade or make
other changes to the program).

If you do have an REU, most of these problems are gone. You do not have to
worry about the program variables or overwriting memory. If you use L0GO,
structures you will still need to declare a buffer in bank 1. The LOGO.
Structure in Basic 8 gets its string data from bank 1, via the @CHAR command.
The LOGO. structure is a method of calling up text on the screen that is often
used (such as for menus). It requires much less memory than a BRUS. structure
containing the same character information. Be sure and run the BS.I0GO demo to
see a fine example of its use.

Now that irou have an understanding of buffer layout within the computers
memory,’ lets look at an entirely separate area of RAM.

Screens

. Within every 128D there is 64K of RAM dedicated for use by the 8463 VDC
(Video Display Chip). This is usually referred to as screen memory. You can use
a part of this memory to hold PICT. or BRUS. structures for viewing. It can be

used for one giant 1280 X 400 monochrome screen that you can view with help from
the @SCROLL command. ' ' -

The older “flat™ 128 had only 16K of video RAM and so ¢ould only display a
limited size of color screen. Unless you have the upgraded RAM chips installed,
you will not be able to take advantage of the full graphics power of Basic 8.

Basic 8 allows you to access this RAM in several ways. You can use one of
four groups of predefined-screens. These are accessed with the 6MODE command. A
, convenient- listing of the available: screens is provided within the Basic 8
- manual., This is perhaps the easiest method of using the available RAM. Various
combinations of view and drawing screens can be called up within each of the 4
- modes. The draw and view screen is specified with the @SCREEN command. If no
number is specified for the view screen then the draw screen also becomes the
view screen. This ability to draw on one screen while viewing another is the

basis for double buffered displays. This display mode will be further explained
in Chapter 13, "Animation details". : '

If the screens available with @MODE do not fit your requirements, you cam
easily program your own with the @SCRDEF command.- Issuing this command will
override any €MODE command that may have been called earlier.

Chapter 12 - Page 65 -

With @SCRDEF you can define a screen or several screens to meet your needs.
You can have a screen as wide as 2040 pixels or as long as 819. The only other
requirements is that it fit within the 64K of RAM. Also, any screen that exceeds
640 pixels across can only be a monochrome screen. Screens of different color
resolutions will not work together on the view screen. An 8X4 color BRUS. placed
on an 8X8 screen-will produce color distortion. The bitmap image remains the
same, it is the colors that don't fit in. Monochrome graphics will work when
displayed to a screen of any color resolution. Because a monochrome screen is
basically a bitmap image with no color information, it has nothing to distort
the screen. Just remember to use structures of the same resolution as the screen
that you are viewing. -

The method of calculating the amount of video RAM the screen will require
is well documented in the manual. It is almost identical to the way we
determined the amount of buffer memory discussed earlier.- ' .

It is important that you carefully plan the various screens you may
require. Your first consideration is the size and resolution of your main view
Screen, 1 tend to opt for an 8x2 oolor resolution for my main screen. 8X4 or 8X8
are also viable alternatives. They require much less memory than the 8X2. The
B8.MAINANIMATION demo on Disk #2 has an 8X2 view screen. The major benefits of
this resolution have been outlined in Chapter 10. There are several ways you can
conserve memory when using the higher resolutions. '

I have found that a monochrome screen can be copied to a color view screen
with excellent results., By first opening a window where the monochrome screen
will be copied to, and using €CLEAR,0,bc,fc, you can specify the colors that the
monochrome screen will take on when it is placed on the view screen. A good
example of this use might be for office building corridors within an adventure
game. The corridor could be up to 2040 pixels long (255 columns). By declaring
the color of the foreground in your window to be blue, any monochrome bitmap
copied to this area will be blue. Then, by using the @WINDOWOPEN:@CLEAR,O,bc,fc
combination, you could change the color as often as you wish. . In this way you
could represent the various levels of the game. by giving the corridor a
different color depending on which “floor" you were on. The use of monochrome
screens can represent a considerable savings of VDC memory.

Another trick you can use is to make your view screen longer than 200
pixels. If you define a screen of 640 X 300 pixels, you have only the top
640X200 pixels actually within view. The other 640 X 100 pixel area makes a
great work area for your program. It is out of sight and, because you can only
€FETCH to the view screen, I find this a great place to put BRUS. structures
containing strips of animation “frames". These can then be ocopied from the
buffer onto the screen work area as required by the program.

By moving color BRUS. structures from the buffer to the work area, you can
save the remaining screen memory for the more important graphics. This becomes
particularly evident when your program requires several animations which are

only used once during its execution. They can be retrieved as needed and placed.
on the work area for copying. ' ' ' '

Chapter 12 - Page 66

Why don‘t we @FETCH directly to the final location? Well, for some
animation sequences this is exactly what you do. For smooth action scenes
however, nothing beats the fluid movement you get when you use @OOPY. This is
especially true of color structures. When a BRUS. structure is @FETCHed to the
screen, first the bitmap, and then the color information is displayed at the
specified location. This is a rather slow process that becomes more apparent the
bigger the BRUS. structure. When you use @COPY, even large areas of graphics can .

be displayed instantanéously. There is no wavyness or jerky movement. This makes -
€O0PY the best method of animating graphics.

By thorough planning, and organization of your screen and buffer layout,
you can store an amazing quantity of graphic structures for use in your program.
I always try and plan the amount of disk access I will need within a program,
For small programs this is not:a problem. Sometime the amount of graphics in a .
complex program demands storage on disk. Unless you want to wait forever while a
large program loads, you should try and access the various disk files
intermittently throughout your program. It is easier to take the wait for disk
access from within a program than to stare at a blank screen. Some of the
initial boredom can be cured if you have a‘nice TITLE screen to look at while
the other files load during the initial startup of the program.

By combining numerous BRUS. files of animation frames into a single PICT.

file, you can save as much as 50% on disk access time over loading the files
separately. y

You can see how all these elements we have talked about, come together in
the production of an animated sequence of simulated game play in - the-
BS.MAINANIMATION demo on Disk #2. . :

Chapter 12 — Page 67

Chapter 12 - Paée 68

CHAPTER THIRTEEN
ANIMATION DETAILS

In Chaéter 11 you saw how to produce a single rotation of a cube. In this
section we "will discuss how to combine a sequence of single rotations into a
"movie® of animated action.,

As we mentioned earlier, each one of the graphic renderings can be thought
-of as a frame, It will take a number of these frames, displayed in rapid
succession, . to produce the appearance of motion. Sometimes this is referred to
as page flipping. It is similar to the page flip books that were available when

I was a child. They usually had a short animated scene of a rabbit hopping about
or some other such action.

The type of animation you use will have a profound effect on the way the
motion is perceived. It can be slow.or fast paced. The number of frames you use
may affect the appearance of the animation. Will your animation sequence remain
in the same spot on the screen, or will it move about? Conversely, does your
animation consist of a single graphic entity, or is it a larger graphic that is
animated an area at a time? In this’ sect1on we will discuss the details of these
various types of animations.

In the demo that was prepared with this book, you will see several types of
animation. There will be examples of animation using €FETCH to display computer—
type lights on the screen. @00PY will be used in several ways. One example will
be the animation of various frames of a satellite as it orbits a planet. The
other is an example of scrolling over a larger graphic which gives the feeling
of actually orbiting the earth from a space ship. There is also a simple
animated rendering of an energy bomb using pomter animation! All of these
methods can be used to produce fantastic ammation in your own program, Its only
limited by your imagination.

Lets l'ook at one of the easiest forms of animation; double buffered
displays. With double buffered animation, a grapmc is rendered -on the draw

screen. You then €COPY this ob]ect to the view screen you defined earlier in
your program.

This type of animation is quite slow. Sometimes it may take several minutes
to render a complex graphic on' the draw screen. Its main value is to show
graphic rélationships within a text program. As you read the descriptive text,
the time can be used to render the graphic image. You could also render graphics

on different locations of the draw screen and display them to the view screen as
needed. -

For more rapid action you will have to utilize one of the other forms of
animation available with Basic 8.

@FETCH Animation

-~

Lets look at animation using @FETCH. For this exercise you s;hould have a
listing of the BS.SCALED CUBE program printed out so you can follow along. To

Chapter 13 — Page 69

get a program listing, make sure your printer is on and the program is in
memory. In direct mode type in this line and press return:

OPEN4,4,7:CMD4: LIST

With most pt:‘inters this line will work. You should check the manual that
came with your printer to be sure. - -

The B8.SCALED CUBE program uses @FETCH to animate the rendered frames of a
spinning cube. This is accomplished with the use of two separate loops.

Lines 420 through 490 render 40 frames of a scaled cube in increments of 9
degrees for a full rotation of 360 degrees. Each frame drawn is saved to buffer
1 with the @STASH command in line 460. Line 470 finds the next buffer address
before rendering the next frame.

The @ANGLE command in line 440 can be modified by the user to produce
different results. Lines 441 and 442 include two possible combinations for you
to try. You can also try these combinations: :

@ANGLE,15,1,60,0
@ANGLE,1,I1,I,0

There are literally millions of z;otational possibilities the cube can
attain with the @ANGLE command. ‘ :

Lines 550 through 580 set up a display loop for viewing the 40 brush
Structures created by the previous loop. Each BRUS. structure contains one frame
of the incremented cube animation.) .

As you can see in the demo, the animation is not exactly smooth, This is the
one drawback of @FETCH animation. It is most apparent when you animate a three
dimensional object. With a two dimensional object however, it becomes a nice way
to display changes in an area of the screen. The main animation demo included
with this book uses @FETCH to produce the effect of changing lights on a space
ship console. Small BRUS, structures can be @FETCHed to screen almost as fast as .

@COPY. You will have to experiment with yoir own BRUS. files to see.if this will
work for you. . . :

The various BRUS. files that make up the changing lights you see within the
B8.MAINANIMATION demo can be displayed with any paint program written in Basic
8. What you will see are the different color variations of the lights
themselves, As each different BRUS. is €FETCHed to the screen, the lights appear
to be switching on and off. Others appear to change color. This gives a very
convincing effect of a busy control panel.® I use this type of animation as
peripheral action that gives the user a feeling that something is always going
on. It is quick and simple. When placed in a subroutine, it can be called upon

at any time within the program. This saves your screen memory for the larger
animations, ')

@COPY Animation

Chapter 13 - Page 70

For the fastest (and most versatile) animation available with Basic 8, you
will be using @COPY to display the various frames of animation to the screen.
These frames must reside in screen memory. The manner. of producing these frames
can be just like the process used to create the various BRUS. structures that
were stored in memory in the B8.SCALED CUBE demo. The:only difference is that
you @QOPY the rendered graphic to a separately defined screen. You then end up
with row upon row of the renderings. These are usually saved as a PICT. file for

later use in your program. The graphics should be spaced evenly so they may be
accessed within.an incremented loop subroutine.

* This method of storing PICT. files of the rendered - graphics is also
utilized by the B8.3D ANIMATOR program on your demo disk. Wwhen you create a new
animation with this program you can actually see the renderings of each rotation
drawn to the screen. This screen is saved for later use with the program. By
listing the program, you can not only see how the graphics are rendered, but how
they are placed and retrieved from the screen. This bonus program makes a great
utility when used to produce animation screens for you' to load and @OOPY within
your own programs. : :

You will see several examples of animation that are created exactly like
those created with BS.3D ANIMATOR. I drew a picture of a satellite and also .a
planet, and reduced them by having them drawn closer to the vanishing point.
This produces a wonderful sense of depth of movement within the program. ‘ With
B8.3D ANIMATOR you can now produce animation such as this for your own-program,

Another type of animation using @OOPY is to view only a portion of the copy
screen at a time on the view screen. You can adapt mouse or joystick control to
allow moving about on the copy screen. Because you can only see this ‘small area
being @DPYed you can get a sense of moving within a larger area. The demo
program B8.COPY-2 shows an example of this type of scrolling @00PY. 1In the main

animation demo, you will also see this type of animation (the program selects
the scroll direction). ‘

This type of animation is great for scrolling around a play screen within-a
game program. You also have the option of scrolling a series of animation frames
around the view screen. In this manner you could have a monster, or other such
creature, walking around the view screen. An animation-effect need not appear in
only one place on the screen. You could even combine the effects; 800PY around a
View screen while you also use €00PY to animate a creature within the new screen
area. This can be done with consecutive @OOPY commands accessed from within the
same loop. The action is so fast that, unless you have many large areas, you

will get the distinct impression of smooth movement in both the character and
background. .

Again; experiment; use your imagination. With a little practice you will
Soon be creating your own animation demos. When you decide to scroll around an
animation on the screen, you will have to take in to consideration the grid -
factor. You do not want to leave a piece of the last copied frame behind as your
graphics move about. To prevent this, you should place a buffer of empty space
around the graphic and within the frame you are copying. This will always be. 8
Pixels on either side of the frame in the X direction. The number of pixels you
allow on either side in the Y direction is determined by how large the scroll

CharmtAar 12 . Da~a 77Y

will be. The smallest empty space will be the same as the color cell size. For
example, an 8X2 frame would have an empty area 2 scanlines above and below the
actual graphic. You can then @QOOPY up or down two scanlines at a time without
leaving anything behind. If you were to attempt a scroll of 4 scanlines, you
would again have the problem of leaving a piece of the last copied frame behind.

The solution of course is to increase the buffer accordingly. This same detail
should be considered when producing the PICT. files of animation frames ~ don't

cram them so close together that you loose this buffer area.

As with -all the supplied demos, you are encouraged to not only list the
programs, but to use a paint program to view the various BRUS., and PICT. files
that went into the making of these demos. Both will teach you a great deal.

Pointer Animation

One type of animation that is available with Basic 8, but not readily
evident is pointer animation. The pointer is the sprite-like arrow you see in
many Basic:8 applications. This is the object you use to point at selected areas
on the screen. The amazing thing is that Basic 8 allows you to define as many as -
eight pointers. This becomes useful when you think of each pointer definition as
being a frame of animation. You are limited to a size of 16x8 pixels, but these
can be altered also! You can specify a 16x16 pixel area. This will cause a loss
of 4 of the available pointers. You can have decent animation sequences with
four frames, but, you will also find that eight will produce more fluid
movement. In the main animation demo, the pointers were defined to represent a
ball of energy. This ball is fired from the satellite. As it travels into the
distance it becomes smaller in size. Using pointers for this animation has its

advantage when you realize that it does not disturb the bltmap or-color image of
the view screen.

Thlnk‘ of the possibilities when you combine the various animation
techniques .available with Basic 8!

Chapter 13 - Page 72

CHAPTER FOURTEEN
MUSIC ENHANCEMENTS

. Although this really has nothing to do with Basic 8, I feel that a chapter
of this book should detail the important roles of music and sound in a program,

Probably the easiest way to see the difference that sound and music can
maeke within a program is to turn the wvolume down (or off if your monitor
permits) until you can no longer hear anything. Try running any program that

" incorporates music, first with and then without sound. Isn't it amazing ‘how

empty the program “feels" without it. Did you notice how it tends to set the
mood of the graphics.

The music and sound routines used in the demo are all written in BASIC.
Unfortunately, you can not have your favorite tune playing while an animated
Sequence is in progress. It is possible but, this requires the use of interrupts
and is well beyond the intent of this book. In this section we will deal with
the use of sound and music in a non-ML (machine language) environment.

I will not attempt to discuss how to write the music. You should learn to
develop this on your own. Its best to start with the manual that came with your
computer. Then if you wish, you could purchase a Programmers' Reference Guide to

further your knowledge base. You will however, see how to use this music within
your own program. :

Because we are restricted by BASIC, you should place the music routines in
the program whenever there is a lull in the program execution. As you will see
-in the BS.MAINANIMATION demo, most of the music is “played* when you are
presented with a lot of text. I usually limit the length of play to the time it
takes me to read the text out loud. This is just a ball park Judgement—some
people- read much faster than others. Because of this, I almost always require
the user to press a key before the program will continue. : :

There are two places that you should always access a music subroutine. This
is at the beginning and just before, or at the end of the program. As I said
earlier, it will help to set the mood of the program. Also, it does not have to
be the same song. A variety of similar songs can really help to maintaining user
interest. Also, it is best if the music fits together.

Of course if you have lulls in the middle of the program, be sure to
include additional music, or perhaps a few measures from an already played song.
This will help maintain a feeling of continuity to the program.

Many BASIC 7.0 music programs can be found at your local user group, in
magazines and also on almost any Commodore BBS. The manual that came with your

computer also lists several type-in programs that you can adapt for your own.
programs.

wWhen you use sound commands within a program, you open up. additional
enhancement possibilities. The beauty of sound lies in the ability to program
the duration, or length of time it will occur. Used intelligently, it can be

Chantar 14— Damna 772

called just before the action occurs, and can be made to last until the
animation routine ends!

This ability is due to the SID (Sound Interface Device) chip. Once it.
receives a command, the chip acts on its own while the program moves elsevhere. .

As you can see, timing is very important when using the sound command. It
takes a lot-of experimentation to get it just right. You can overcome some of.
the tedium by using a stop watch or the second hand on a wristwatch to determine
the amount of time a particular animated sequence takes. Then, you can check the-
adjustments to the sound command in direct mode, without having to run the
program over and over. When you think you have it, check it out within the
program. This saves valuable programming time, ‘ ’

The variety of sounds is infinite. Try these variations of the sound:
conmmand

SouND1,62000,375,2,55000,1700,1,1 = sensor scan
Sounbl, 6000,280,0,300,20,3,20 : ~ spaceship take-off
S0uWD1,49152,450,1,0,100,3 - spaceship landing
SOUND1, 60000, 240,0,32768,3000,0,2600 - ray gun

With a 1little practice, you can develop just the right sound for your-
program. Remember, you have three separate voices to use, alone or together!

Another énhancement that is new to the market is DigiTalker by Free Spirit
Software. This program allows you to add digitized wices to your Basic 8
programs. It is not a speech synthesizer. It uses digitized blocks of letters,
words and phrases. Because it was produced by the authors of Basic 8, these-
clip-sounds can easily be incorporated into your program. There are both
masculine and feminine voices recorded. They are the digitized voices of real-
people, not just computerized sounds. Just think of the possibilities this:
program addition has to offer! Sentences such as “Press any key when ready" can
greet the user of your program with this wonderful addition.

In conclusion, I hope you will gain the confidence to try your hand at.
producing animation with Basic 8. The information contained within this book is

the result of many hours of experimentation with the Basic 8 graphic development
package.)

I would like to thank David Darus and Lou Wallace of Walrusoft for
producing this revolutionary product. They have allowed the average user to
unleash the ‘graphics power of the 128; an ability that was not supposed to be-
possible! I challenge you to produce a Basic 8 animation program. The only limit
is your imagination!

Chapter 14 - page 74

APPENDIX - A
BASIC 8 QUICK REFERENCE LIST

- @ANGLE, X angle, Y angle, Z angle
@ANGLE,0,0,0 ‘
€ARC, Center X, Center Y, Center Z, X radius, Y radius,
'~ Starting angle,Ending angle,Increment,Thickness,Subtend flag
@ARC,320,100,0,50,100,0,360,10,1,0
€BoX, X1, Y1, 21, X2, Y2, 22,Shear direction, Shear value, Thickness
@Box,0,9,0,639,199,0,0,0,1
@BRUSHPATRN, Brush Structure #, Pattern Structure %, Buffer #, Address
@BRUSHPATRN, 2,1,1,0
@BUFFER, Buffer ¢, Beginning Address, Size
€BUFFER, 1,1024,48000
@CBRUSH, Structure #, Reverse, Reflect . Flip
€CBRUSH, 10,0,0,1 . ,
€QiAR, Structure #, Column, Row, Height, Width, Direction, “Char String"
@CHAR, 254,0,0,1,1,2,"I Love Basic 8! .
€CIRCLE, Center X, Center Y, Center Z, Radids, Thickness
€CIRCLE,320,100,0,75,1 :
@CLEAR, Bitmap £ill value
@CLEAR, O
€COLOR, Background color, Foreground color, Outline color (border)
@C0LOR, 2,15,0
€QoPY, Source screen, Start X,Start Y, DX, DY, Destination Screen, EX, EY
@CDPY,I,_0,0,639,199,2,0,0 : :
€CYLNDR, X, Y, Radius, Halflen, View
@CYLNDR,].O,SO,.I
€DISPLAY, Screen §, Device #, Drawmode, "Filename" (,X Y)
@DISPLAY, 1,8,0,"PICT.SAILBOAT"
€T, X, Y, Z
€DoT,320,100,0
€DRWMODA, Jam, Inverse video, Complement, Undraw, Pattern, Merge, Clip
@DRMVIOW\:,I,O,O,O,O,O,O
€DRAMODB, Zview, Unplotlast, Unplotvertex
@DRIWMODB, 0, 1,1
@FETCH, Structure §, X, Y, Draw Mode
@E'ETCH,I,320,100,0
€FLASH, X, Y, DX, DY, Number of flashes (,Fast)
@FIASH,O_,-O,GBQ,ZS,SO,I
@FONT, Charset ¥, Structure &
_ @FONT, 1,6
@GROW, X Step, Y Step, Z Step
@GROW,0,0,1
€HCOPY, Sec Address, Height, Density, Rotation
€HCOoPY, S,2,1,1 —
€LINE, X1, Yl; Z1, x2, Y2, Z2, Thickness
@LINE,O,100,0,639,100,0‘,-1
@LOGO, Structure number :
8LSTRUCT, Struct #, Device #. Buffer #, Buffer address, Filename
@LSTRUCI‘,l,B,l,O,“PICI‘.TITLE“: @SEND .

€MOPE, Mode# (,Interlace flag)
@MOUSE, On/Off, Device, X, Y (,Joystick increment)
@MOUSE 1,0,0,0 / @MOUSE,O Mouse on / Mouse off
@MOUSE 2,0 /Y = @MOUSE,2,1 Read X position / Read Y position
@ORIGIN Center X, Center Y, Center Z, Vanish X, Vanish Y, Vanish Z
@ORIGIN 320,100,100,200,100,200
@PAINT, X, Y, Bankf, Address, Size
@PAINT, 100,100,0,57346,1024
@PATTERN, Structure number

@PATTERN, 1

@PIXEL, X, Y, Mode
= @PIXEL, 50,50,0 A =0 :Pixel is OFF, A = 1 :Pixel is ON

@PTR, On/off, X, Y, Definition # (, Height))

€PTR,0 / @PTR,1,0,0,0 Pointer OFF / Pointer ON

@PTR,2,0,0,0 Leave trail
€SCALE, Scale #)

€SCALE, 0 No Scaling

@SCALE,1 / @SCALE,2 640 x 512 / 1280 x 1024 Logical screen

€sCLIP, Left , Right, Up, Down
@scLIP,50,50,100,75
€@SCRDEF, Screen §, Display type, Color size, Size X, Size Y,
Bitmap beg addr, Colormap addr
@SCRDEF,0,0,1,640,346,0,27681
€@SCREEN, Draw screen, View screen
€@SCROLL, Direction, Number of units, Speed
@SCROLL, 2, 10, S0
€@SDAT, Parameters/ optlonal data
€@SEND
€@SPHERE, X, Y, Radius
€@SPHERE, 320,100,50)
€SPOOL, X, Y, Inner radius, Outer radius, View
€spooL,320,100,50,100,0
€SSTRUCT, Struct #, Device $, Filename
@SSTRUCT, S, S, "BRUS.MYCLIP" -
@STASH, Structure %, Buffer #, Buffer Address, X, Y, DX, DY, Compression
@STASH110003201001
€STORE, Screen §, Device #, Compression flag, Filename
@STORE, 2,8,1,"PICT.65-MUSTANG™
@STRUCT, Structure %, Type, Buffer, Beglnnmg address
@sSTRUCT,1,4,1,0
@STYLE, Shade Scale, Lighting
@STYLE,1,1,0
@TEXT '
€@TOROID, X, Y, Inside radius, Outside radius, View .
€@ToRrROID, 320,100,50,100,0 - :
@VIEW, Angle)
€WALRUS, VDC RAM TYPE
@meOWOPEN ¢ X, ¥, Window width, Window height, Border flag
@WINDOWOPEN, 0,0, 640,100,1
EWINDOWCLOSE
€@z00M, Structure §, Size, Destx, ‘Desty
€zoom,1,8,0,0

Appendix A - Page 76

. APPENDIX B
COMMON VARIABLE ASSIGNMENTS AS USED IN THIS BOOK

With each example of a Basic 8 command given in this book, several common
variables are used. Since this book is designed as a tutorial, we will assume
the variables are stated as they commonly are used. For example: €DOT, X, Y, Z -
we will define X as a point on the horizontal axis from 0-639 since this relates
to a common screen size. Since screen sizes are variable, technically the X
could be a number up to 65535 (maximum size of a virtual screen). For specific
information regarding maximum sizes and and specific uses for each command,
Please. refer to your Basic 8 manual. It is assumed that every purchaser of this
book is a registered Basic 8 user. There would be little point to rewrite the
200 page manual as part of this book.

X = Point on horizontal axis usually from 0-639 depending on screen size.
Y = Point on vertical axis usuélly from 0-199 depending on screen size.
Z =

Point on Z axis (in & out) Zusually set to 0. Used for 3D :plotting.
Angle = Number of degrees from:-360 to 360

X1,Y1,21 = X,Y,2 locatiori to start line.

X2,Y2,22 = X,Y,Z location to end line.

Center X,Center Y,Center Z = define the center of circle on the X,Y,Z axis.

DX = Distance on X axis. Use the number of columns x 8 to figure distance.

DY = Distance on Y axis. Use nunber of rows x color cell size to figure
position. ‘

DestX,DestY = Destination X,Y locations, used in @OOPY and @QZOOM.

Radius = 1/2 the width of a circle

Appendix A — Page 77

APPENDIX C
ABOUT THE AUTHORS

Dave Krohne:

Dave Krohne (aka "Whiz Kid") resides in Southern California where he is 2
computer science teacher for the local elementary school. Dave Krohne is also an
avid Commodore 128 supporter who has authored several top quality 128 specific
programs including Spectrum 128, News Maker 128 and Sketchpad 128, Each of these

programs take " full advantage of your Commodore 128 in its 80 column graphic
mode. - '

. By writing this book Mr. Krohne hopes to inspire other Basic 8 enthusiast
€o write additional public domain and commercial software. He believes that as
long as users are willing to support the 128, the 128 will prove itself to be a
practical computer for years to cone,

Roger Silva:

Roger Silva resides in Charlotte, Vermont with his wife Terry ahd 7 year
old son Jared. He is interested in Biology, Astronomy, and anything else that
involves nature and the outdoors. As far as an occupation goes, he is a
cabinetmaker and a woodworker. '

Mr. Silva‘'s first computer purchase was in 1985 when he bought a 128. Since
the arrival of Basic 8 he has endeavoured to produce high quality art and
animation with this wonderful development package. There are several public
domain pictures and animation demos available on O-LINK where he hosts the
graphics chat room (known as the Starving Artist Cafe) every Sunday night..
Roger's screen name is Mr Silly!

Appendix C - Page 78

INDEX

1581

addreSSQQQQQCC0.0‘oo...o..‘.o..o......c

.ooo...o...-.co......-‘.000'00000..

@ANGLE..C..-".........0000000.0000..00

- @ARC.Q...QO...Q...'.QOC.‘.C........Q...

bACKGIOUNAe et ueeeascencccaacoccccacees
BANK. e ceeeneeteneenecanae cescecsccccca
bitmap..... cesascses
112 0) SO DU
BRUS.eeeeececacans
o1 411 B
@BUFFER................................
1613 1) S S
CCBRUSH v eseeeeeeeencacassscssccoccnnnn
@G-XAR..................................
BCIRCLE . ceasaeteeencecsacccnscnccccansa
BCLEAR . e eeecetecenecceooccnsasanancans
1100 74 2 P
15160, 2 S
@CYINDR e e e ecesseeancacaccocsoocsceconns
2T BY =3 1T S
@DISPiAY...............................
Qitheringeeeeceeeececeececcecacsccenens

..OQ...‘...C.0'...0.....‘.0......‘.

Dramedetc 00000 s0e0sseea s 0essssseseceve
@DRWMODA..Q..-.OCC 00000 4000000 cacsssne
@DRWMODBQCO $9QGes000s0c00000000ss e

@m.....‘....‘...Q..‘.“.‘.‘.‘....‘.

40 s00vesvssevevsoe

®e0css0ccaneseGsovocs e

@FUNTQ..QQ“.Q..Q....QO.Qoo.ooooocooooc
EONT.............‘.O...O.C........‘....
Eonts..onoe..oaooooc.-0000.00.0‘.00.0..

for@romd‘..‘........l................

mqooooo-oooocoocooo.0000.000...00.0.

JoystICK“.......C..QQ...Q.“.‘.....O..
QLINE

)1°g°oaoo00-oco-oooocoooooooooooo.oocco'
€LOGO
L(x;ooo.-...............--....-.......o-
@LSTRUCT e eeeeeeaennnancncccccacacnnne
EMODE. et teeeenenanaaann
muse-o.-ooco---ooooooc.oooooocooo.oooo
@WSE.... secsss LR R R R IR AP
mUSIC........

.......‘..“...........0..........

O.....Q."'.‘..C........O......l.'

LA R A R R RERENE R RER R NP

orlgln.o.ootcoooooo.oo..o‘)o.oo’a.ooo..
€ORIGIN

@RAINT..OC.Q.Q..Q.....Q‘QQ.O.Q.‘Q'QQ...

parallel

“%evscras e LA X R R RPRPRPEEEE R R P teccacce

€0000000000000sco0vsostcs000000se

MAAAE S R X R E R R E R RN R P Y YT

30,31
18,25,30,31,39,61,63-55,70,75,76
6,39,51,52,55-58, 70

11,12

7.9,20,34,35,37,41, 43 46, 71
17,6163, 65
5,6,7,35,43,44,62,63,66, r7 72
11,21,51,56
27,35,39,44,52,62,64-67,70~72
7,15,20,21, 30 ¢35,36,37,43,62,70
17,61,62,63
17,18,20,21,30,61-67,69,70-72
20,37

19,20,46,57,63,65

11,12,51

6,10,36,51,57,66

6

8,28,36,37,39,67,69-72

14

1,18,27,29,74

7,8

36,43

11,51

7,8,75

6,18,21,43

6,39,51,56,57
8,20,39,66,67,69,70

20,38

18,20,27,44,64,65

17,20

7,20,36,41,43,66

11,12

23,33,46,71

11,50,51,55,56

5,17,19

19

18,27,64,65

18,64

5,6,9,25,65,75
9,11,21,23,24,29,33,34,36,46,71
9,23,24

39,73

6,36,50,56,57,58, 59
6,.35,36,39,49-51,54,56,58, 59
18,46,62
39,50,51,56,57,58
18,27.43.64.75

PAtterNeecccccancacee eecececccscacscaan
@PATI‘ERN S0e0cce ER R RN Y s essassasscse

PerspecCtive.iccecccass eeccecace cecesceana
PICI‘....Q.I..C.O‘.Cd.“.‘t.ﬂ...o“.‘..b‘l

@PIXEL.‘.O.....‘.....0.-‘............‘.

winterQQOQ‘oonoooooooo.oo..o.oooocoaao
Prlnt Shop..-...0.0..0.00000000...0...0

@PrRoo........-oo....oo....oo.oo.‘.....

RAM.‘00'000"000.000‘.c.o..o.o.oo..‘.l.

resolution.eeececaces ceescacece cesccces
rotatioNeeeececececcas eececscsscscsns cee
Rylander...ccecececeeccaascsscsccscas .o
@m...‘....‘..o.‘._....“ sSeoecsee
SCAle.iieeccocccanana esececccanancaasas
SCAN]1INES.eeeecaccocancascccccses ceccee
BSCLIP.scccacccccncas esesecccsscsccsce
@S(:RDEFoqonccogo.ncoo.oeaoonooooooo-oooo
CBSCREEN ¢ eceevase ceccsae escsescascsae .o
SCLEENS ceecncaccsccsccancccascsnne ceees
(7] o3 1 A A RPN cssces
BSCROLL . csceeececccscocccccccccsaccscsss
ESEND.ceaccaes tesececsveccsssacsas cecas

solids.o..o...oooococ‘.cooo. ooooo eeccsseoe
SOUNoooo.ooceoo eces
mundoooootocooooooo;o000... s sce

QSPHERE. cceeeescccacsevesascssccaccnsnse
€SPO0L ccccccceccoccacnascacnccnnces ceae
StACKeeeeecceoccsosccccccscccsacancss .o
BSTASH . ceeecacecceaccacancancccssnae cee
BSTORE ceececcescccccccsccsscsasccscsase
BSTRUCT cveeenccccococoscnans sescscscaan
SErUCtUL @ scessesccscsncscscscsscncnss .o
ESTYLE.ecceeeccccann cescccccsas cecsaas .
OTEXTeeecseascccccossascaccsce ecccsasca
CTOROID s eceaacccccaccccscasscscaccascnns
vanishing point.cceeiccceccccceccascces
VIAEO RAMut.cceecvcccioccacossccccnse cee
QVIEW.eaceeae escaseccssascsuscaccsssssse
CWALRUS . ceeeesaceeencanacacssssssacsces
WinNdOWeececaosecenccccacaee esscccacscss
CWINDOWCLOSE e e aasceccans eeesssccecscscsnaa
CWINDOWOPEN 2 e eeececsscsssssccsccsaccns

@ZmMcocacoooocooo.ao.ocooooooooc-coo-o

13,17,18,43

18

6,14,39,49,50,51,56,57
7,9,19,27,35,39,45,46,52,62,65,67,71,72
28,29
1,23,24,37,43,44,46,63,64,69,72
30,33,34,35,52

23,24,27
5,6,17,33,34,41,61,63,65,66,76
41,43,63,66

34,49-59,69,70,71

12,13,37
12,14,53,54,57-59,69,70,71
12,13,14,53,58,59,562,70

5,72

13 -

9,65,66

6,9,25,61,65
5-7,9,11,17,20,28,35,36,63,65,66,71 .
5,6,37,41,42,47,69,71,72

65

18,64

12-15,37,53

27,74

6,8,39,73,74

14

14

13,18,30,38,62,63
10,20,64,706

9

17,18,64
7,17-21,30,50,52,53,61-67,70,71
13,14

5¢6,9,25,31,32

14

49,50~52,54,56,58,71
1,5,6,17,33,34,65,66

39,57,58

5,6,64

10,25,36,56,57,66

10,57

10,56,57,66

21,33,38,43

Tndex — Paage R0

How To Get The Most Qut Of Basic 8

Basic 8 is the most powerful hi-res graphics development system
ever designed for the Commodore 128. "How To Get The Most Out Of
Basic 8" was written to show you how to access the many powerful
features of Basic 8,

"How to Get the Most Out of Basic 8", written by Dave Krohne, aka
"Wwhiz Kid", and Roger Silva, aka "Mr. Silly", provides in-depth
explanations of many Basic 8 concepts along with helpful examples
and demos. Chapters cover such important topics as graphics
modes, Rylander 3D solids, user input and utilities. A multi-
chapter portion of the book is dedicated to creating animations
with Basic 8. This section provides the basics of good animation
technique, and then goes on to give examples of how to create an
animation from scratch.

Two disks are included which are filled with examples, demos and
utilities that are described in the text. You can load the
programs and follow along with the text, modify the programs with
a little guidance from the authors and then experiment on your
own. : ‘

Basic 8, an 80-column monitor, and either a Commodore 128 with
64K of video RAM or a 128D are required.

@989 by Free Spirit Software
All rights reserved.
Made in the USA

