/* * COMPRESS.C * */ #include "defs.h" #define ngetchar() oreadchar() #define nputchar(n) mputc(n) #ifndef min #define min(a,b) ((a>b) ? b : a) #endif #define BITS 13 #ifdef _DCC #define HSIZE 9001 #else #if BITS == 16 #define HSIZE 69001 /* 95% occupancy */ #endif #if BITS == 15 #define HSIZE 35023 /* 94% occupancy */ #endif #if BITS == 14 #define HSIZE 18013 /* 91% occupancy */ #endif #if BITS == 13 #define HSIZE 9001 /* 91% occupancy */ #endif #if BITS <= 12 #define HSIZE 5003 /* 80% occupancy */ #endif #endif typedef long code_int; typedef long count_int; typedef unsigned char char_type; #define MAXCODE(n_bits) ((1 << (n_bits)) - 1) #define INIT_BITS 9 /* initial number of bits/code */ int n_bits; /* number of bits/code */ int maxbits; /* user settable max # bits/code */ code_int maxcode; /* maximum code, given n_bits */ code_int maxmaxcode; /* should NEVER generate this code */ __far count_int htab[HSIZE]; __far uword codetab[HSIZE]; #define htabof(i) htab[i] #define codetabof(i) codetab[i] code_int hsize = HSIZE; /* for dynamic table sizing */ #define tab_prefixof(i) codetabof(i) #define tab_suffixof(i) ((char_type *)(htab))[i] #define de_stack ((char_type *)&tab_suffixof(1<ln_Succ; node = node->ln_Succ) { if (WildCmp(node->ln_Name, name)) { if (Verbose) printf(" Will not compress %s\n", name); return(0); } } } if (WildCmp("*.Z", name) || WildCmp("*.ARC", name) || WildCmp("*.ZOO", name)) { if (Verbose) printf(" Will not compress %s\n", name); return(0); } CLen = 0; CWrite = GetHead(&CList); if (CWrite == NULL) CWrite = NewSComp(); CWrite->N = 0; setmem(htab, sizeof(htab), 0); setmem(codetab, sizeof(codetab), 0); hsize = HSIZE; if ( fsize < (1 << 12) ) hsize = min ( 5003, HSIZE ); else if ( fsize < (1 << 13) ) hsize = min ( 9001, HSIZE ); else if ( fsize < (1 << 14) ) hsize = min ( 18013, HSIZE ); else if ( fsize < (1 << 15) ) hsize = min ( 35023, HSIZE ); else if ( fsize < 47000 ) hsize = min ( 50021, HSIZE ); offset = clear_flg = ratio = 0; in_count = 1; checkpoint = CHECK_GAP; n_bits = INIT_BITS; /* number of bits/code */ maxbits = BITS; /* user settable max # bits/code */ maxcode = MAXCODE(INIT_BITS); /* maximum code, given n_bits */ maxmaxcode = 1 << BITS; /* should NEVER generate this code */ free_ent = ((block_compress) ? FIRST : 256 ); ent = ngetchar(); hshift = 0; for ( fcode = (long) hsize; fcode < 65536L; fcode *= 2L ) hshift++; hshift = 8 - hshift; /* set hash code range bound */ hsize_reg = hsize; cl_hash((count_int)hsize_reg); /* clear hash table */ /*printf("hshift %d hsr %d,%d\n", hshift, hsize_reg, hsize);*/ while ((c = ngetchar()) != EOF) { in_count++; fcode = (long) (((long) c << maxbits) + ent); i = ((c << hshift) ^ ent); /* xor hashing */ /*printf("c %02x fcode %08lx i %d ent %08lx\n", c, fcode, i, ent);*/ if (i >= hsize_reg) { /*printf("compress error A1 : %d on $%02x ent %lx\n", i, c, ent);*/ if (i >= HSIZE) { puts("XXX1"); continue; } } if (htabof (i) == fcode) { ent = codetabof(i); continue; } else if ((long)htabof (i) < 0) /* empty slot */ goto nomatch; disp = hsize_reg - i; /* secondary hash (after G. Knott) */ if (i == 0) disp = 1; probe: if ((i -= disp) < 0) i += hsize_reg; if (i >= hsize_reg || i < 0) { /*printf("compress error A2 : %d on $%02x\n", i, c);*/ if (i >= HSIZE) { puts("XXX2"); continue; } } if (htabof (i) == fcode) { ent = codetabof(i); continue; } if ((long)htabof (i) > 0) goto probe; nomatch: output ((code_int) ent); ent = c; if (free_ent < maxmaxcode) { codetabof(i) = free_ent++; /* code -> hashtable */ htabof(i) = fcode; } else if ((count_int)in_count >= checkpoint && block_compress) cl_block (); } /* * Put out the final code. */ output((code_int)ent); output((code_int)-1); return(CLen < fsize); } static char buf[BITS]; char_type lmask[9] = {0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00}; char_type rmask[9] = {0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff}; void output( code ) code_int code; { register int r_off = offset, bits= n_bits; register char * bp = buf; if ( code >= 0 ) { /* * Get to the first byte. */ bp += (r_off >> 3); r_off &= 7; /* * Since code is always >= 8 bits, only need to mask the first * hunk on the left. */ *bp = (*bp & rmask[r_off]) | (code << r_off) & lmask[r_off]; bp++; bits -= (8 - r_off); code >>= 8 - r_off; /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if ( bits >= 8 ) { *bp++ = code; code >>= 8; bits -= 8; } /* Last bits. */ if(bits) *bp = code; offset += n_bits; if (offset == (n_bits << 3)) { bp = buf; bits = n_bits; mwrite(bp, bits); bp += bits; bits = 0; offset = 0; } /* * If the next entry is going to be too big for the code size, * then increase it, if possible. */ if (free_ent > maxcode || (clear_flg > 0)) { /* * Write the whole buffer, because the input side won't * discover the size increase until after it has read it. */ if (offset > 0) mwrite(buf, n_bits); offset = 0; if (clear_flg) { n_bits = INIT_BITS; maxcode = MAXCODE(INIT_BITS); clear_flg = 0; } else { n_bits++; if (n_bits == maxbits) maxcode = maxmaxcode; else maxcode = MAXCODE(n_bits); } } } else { /* * At EOF, write the rest of the buffer. */ if (offset > 0) mwrite(buf, (offset + 7) / 8); offset = 0; } } char * xrindex(s, c) /* For those who don't have it in libc.a */ register char *s, c; { char *p; for (p = NULL; *s; s++) { if (*s == c) p = s; } return(p); } void cl_block() /* table clear for block compress */ { register long int rat; checkpoint = in_count + CHECK_GAP; if (in_count > 0x007fffff) { /* shift will overflow */ rat = CLen >> 8; if (rat == 0) { /* Don't divide by zero */ rat = 0x7fffffff; } else { rat = in_count / rat; } } else { rat = (in_count << 8) / CLen; /* 8 fractional bits */ } if (rat > ratio) { ratio = rat; } else { ratio = 0; cl_hash ( (count_int) hsize ); free_ent = FIRST; clear_flg = 1; output ( (code_int) CLEAR ); } } void cl_hash(hsize) /* reset code table */ register count_int hsize; { register count_int *htab_p = htab+hsize; register long i; register long m1 = -1; i = hsize - 16; do { /* might use Sys V memset(3) here */ *(htab_p-16) = m1; *(htab_p-15) = m1; *(htab_p-14) = m1; *(htab_p-13) = m1; *(htab_p-12) = m1; *(htab_p-11) = m1; *(htab_p-10) = m1; *(htab_p-9) = m1; *(htab_p-8) = m1; *(htab_p-7) = m1; *(htab_p-6) = m1; *(htab_p-5) = m1; *(htab_p-4) = m1; *(htab_p-3) = m1; *(htab_p-2) = m1; *(htab_p-1) = m1; htab_p -= 16; } while ((i -= 16) >= 0); for ( i += 16; i > 0; i-- ) *--htab_p = m1; } void UnCompressFile(insize) long insize; { register char_type *stackp; register int finchar; register code_int code, oldcode, incode; /* * As above, initialize the first 256 entries in the table. */ setmem(htab, sizeof(htab), 0); setmem(codetab, sizeof(codetab), 0); offset = clear_flg = ratio = 0; in_count = 1; checkpoint = CHECK_GAP; n_bits = INIT_BITS; /* number of bits/code */ maxbits = BITS; /* user settable max # bits/code */ maxcode = MAXCODE(INIT_BITS); /* maximum code, given n_bits */ maxmaxcode = 1 << BITS; /* should NEVER generate this code */ for ( code = 255; code >= 0; code-- ) { tab_prefixof(code) = 0; tab_suffixof(code) = (char_type)code; } free_ent = ((block_compress) ? FIRST : 256 ); finchar = oldcode = getcode(); if (oldcode == -1) /* EOF already? */ return; /* Get out of here */ oputc((char)finchar); /* first code must be 8 bits = char */ stackp = de_stack; while ((code = getcode()) > -1) { if ((code == CLEAR) && block_compress) { for (code = 255; code >= 0; code--) tab_prefixof(code) = 0; clear_flg = 1; free_ent = FIRST - 1; if ((code = getcode()) == -1) /* O, untimely death! */ break; } incode = code; /* * Special case for KwKwK string. */ if (code >= free_ent) { *stackp++ = finchar; code = oldcode; } /* * Generate output characters in reverse order */ while ( code >= 256 ) { *stackp++ = tab_suffixof(code); code = tab_prefixof(code); } *stackp++ = finchar = tab_suffixof(code); /* * And put them out in forward order */ do oputc (*--stackp); while (stackp > de_stack); /* * Generate the new entry. */ if ((code=free_ent) < maxmaxcode) { tab_prefixof(code) = (unsigned short)oldcode; tab_suffixof(code) = finchar; free_ent = code+1; } /* * Remember previous code. */ oldcode = incode; } } code_int getcode() { /* * On the VAX, it is important to have the register declarations * in exactly the order given, or the asm will break. */ register code_int code; static int offset = 0, size = 0; static char_type buf[BITS]; register int r_off, bits; register char_type *bp = buf; if (clear_flg > 0 || offset >= size || free_ent > maxcode) { /* * If the next entry will be too big for the current code * size, then we must increase the size. This implies reading * a new buffer full, too. */ if ( free_ent > maxcode ) { n_bits++; if ( n_bits == maxbits ) maxcode = maxmaxcode; /* won't get any bigger now */ else maxcode = MAXCODE(n_bits); } if ( clear_flg > 0) { maxcode = MAXCODE (n_bits = INIT_BITS); clear_flg = 0; } size = oread(buf, n_bits); if (size <= 0) return -1; /* end of file */ offset = 0; size = (size << 3) - (n_bits - 1); } r_off = offset; bits = n_bits; /* * Get to the first byte. */ bp += (r_off >> 3); r_off &= 7; /* Get first part (low order bits) */ code = (*bp++ >> r_off); bits -= (8 - r_off); r_off = 8 - r_off; /* now, offset into code word */ /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if ( bits >= 8 ) { code |= *bp++ << r_off; r_off += 8; bits -= 8; } /* high order bits. */ code |= (*bp & rmask[bits]) << r_off; offset += n_bits; return code; }