/* ARC - Archive utility - ARCLZW (C) COPYRIGHT 1985 by System Enhancement Associates; ALL RIGHTS RESERVED By: Thom Henderson Description: This file contains the routines used to implement Lempel-Zev data compression, which calls for building a coding table on the fly. This form of compression is especially good for encoding files which contain repeated strings, and can often give dramatic improvements over traditional Huffman SQueezing. Language: Computer Innovations Optimizing C86 Programming notes: In this section I am drawing heavily on the COMPRESS program from UNIX. The basic method is taken from "A Technique for High Performance Data Compression", Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19. Also see "Knuth's Fundamental Algorithms", Donald Knuth, Vol 3, Section 6.4. As best as I can tell, this method works by tracing down a hash table of code strings where each entry has the property: if is in the table then is in the table. */ #include #include "arc.h" /* definitions for older style crunching */ #define FALSE 0 #define TRUE !FALSE #define TABSIZE 4096 #define NO_PRED 0xFFFF #define EMPTY 0xFFFF #define NOT_FND 0xFFFF static unsigned int inbuf; /* partial input code storage */ static int sp; /* current stack pointer */ static struct entry /* string table entry format */ { char used; /* true when this entry is in use */ unsigned int next; /* ptr to next in collision list */ unsigned int predecessor; /* code for preceeding string */ unsigned char follower; /* char following string */ } string_tab[TABSIZE]; /* the code string table */ /* definitions for the new dynamic Lempel-Zev crunching */ #define BITS 12 /* maximum bits per code */ #define HSIZE 5003 /* 80% occupancy */ #define INIT_BITS 9 /* initial number of bits/code */ static int n_bits; /* number of bits/code */ static int maxcode; /* maximum code, given n_bits */ #define MAXCODE(n) ((1<<(n)) - 1) /* maximum code calculation */ static int maxmaxcode = 1 << BITS; /* largest possible code (+1) */ static char buf[BITS]; /* input/output buffer */ static unsigned char lmask[9] = /* left side masks */ { 0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00 }; static unsigned char rmask[9] = /* right side masks */ { 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff}; static int offset; /* byte offset for code output */ static long in_count; /* length of input */ static long bytes_out; /* length of compressed output */ static unsigned int ent; /* To save much memory (which we badly need at this point), we overlay * the table used by the previous version of Lempel-Zev with those used * by the new version. Since no two of these routines will be used * together, we can safely do this. Note that the tables used for Huffman * squeezing may NOT overlay these, since squeezing and crunching are done * in parallel. */ static long *htab = (long *)string_tab; /* hash code table (crunch) */ static unsigned int codetab[HSIZE]; /* string code table (crunch) */ static unsigned int *prefix = codetab; /* prefix code table (uncrunch) */ static unsigned char *suffix = (unsigned char *)string_tab; /* suffix table (uncrunch) */ static int free_ent; /* first unused entry */ static int firstcmp; /* true at start of compression */ static unsigned char stack[HSIZE]; /* local push/pop stack */ /* * block compression parameters -- after all codes are used up, * and compression rate changes, start over. */ static int clear_flg; static long ratio; #define CHECK_GAP 10000 /* ratio check interval */ static long checkpoint; /* * the next two codes should not be changed lightly, as they must not * lie within the contiguous general code space. */ #define FIRST 257 /* first free entry */ #define CLEAR 256 /* table clear output code */ static cl_block(t) /* table clear for block compress */ FILE *t; /* our output file */ { long int rat; checkpoint = in_count + CHECK_GAP; if(in_count > 0x007fffff) /* shift will overflow */ { rat = bytes_out >> 8; if(rat == 0) /* Don't divide by zero */ rat = 0x7fffffff; else rat = in_count / rat; } else rat = (in_count<<8)/bytes_out;/* 8 fractional bits */ if(rat > ratio) ratio = rat; else { ratio = 0; setmem(htab,HSIZE*sizeof(long),0xff); free_ent = FIRST; clear_flg = 1; putcode(CLEAR,t); } } /***************************************************************** * * Output a given code. * Inputs: * code: A n_bits-bit integer. If == -1, then EOF. This assumes * that n_bits =< (long)wordsize - 1. * Outputs: * Outputs code to the file. * Assumptions: * Chars are 8 bits long. * Algorithm: * Maintain a BITS character long buffer (so that 8 codes will * fit in it exactly). When the buffer fills up empty it and start over. */ static putcode(code,t) /* output a code */ int code; /* code to output */ FILE *t; /* where to put it */ { int r_off = offset; /* right offset */ int bits = n_bits; /* bits to go */ char *bp = buf; /* buffer pointer */ int n; /* index */ if(code >= 0) /* if a real code */ { /* * Get to the first byte. */ bp += (r_off >> 3); r_off &= 7; /* * Since code is always >= 8 bits, only need to mask the first * hunk on the left. */ *bp = (*bp&rmask[r_off]) | (code<>= (8 - r_off); /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if(bits >= 8) { *bp++ = code; code >>= 8; bits -= 8; } /* Last bits. */ if(bits) *bp = code; offset += n_bits; if(offset == (n_bits << 3)) { bp = buf; bits = n_bits; bytes_out += bits; do putc_pak(*bp++,t); while(--bits); offset = 0; } /* * If the next entry is going to be too big for the code size, * then increase it, if possible. */ if(free_ent>maxcode || clear_flg>0) { /* * Write the whole buffer, because the input side won't * discover the size increase until after it has read it. */ if(offset > 0) { bp = buf; /* reset pointer for writing */ bytes_out += n = n_bits; while(n--) putc_pak(*bp++,t); } offset = 0; if(clear_flg) /* reset if clearing */ { maxcode = MAXCODE(n_bits = INIT_BITS); clear_flg = 0; } else /* else use more bits */ { n_bits++; if(n_bits == BITS) maxcode = maxmaxcode; else maxcode = MAXCODE(n_bits); } } } else /* dump the buffer on EOF */ { bytes_out += n = (offset+7) / 8; if(offset > 0) while(n--) putc_pak(*bp++,t); offset = 0; } } /***************************************************************** * * Read one code from the standard input. If EOF, return -1. * Inputs: * cmpin * Outputs: * code or -1 is returned. */ static int getcode(f) /* get a code */ FILE *f; /* file to get from */ { int code; static int offset = 0, size = 0; int r_off, bits; unsigned char *bp = (unsigned char *)buf; if(clear_flg > 0 || offset >= size || free_ent > maxcode) { /* * If the next entry will be too big for the current code * size, then we must increase the size. This implies reading * a new buffer full, too. */ if(free_ent > maxcode) { n_bits++; if(n_bits == BITS) maxcode = maxmaxcode; /* won't get any bigger now */ else maxcode = MAXCODE(n_bits); } if(clear_flg > 0) { maxcode = MAXCODE(n_bits = INIT_BITS); clear_flg = 0; } for(size=0; size> 3); r_off &= 7; /* Get first part (low order bits) */ code = (*bp++ >> r_off); bits -= 8 - r_off; r_off = 8 - r_off; /* now, offset into code word */ /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if(bits >= 8) { code |= *bp++ << r_off; r_off += 8; bits -= 8; } /* high order bits. */ code |= (*bp & rmask[bits]) << r_off; offset += n_bits; return code; } /* * compress a file * * Algorithm: use open addressing double hashing (no chaining) on the * prefix code / next character combination. We do a variant of Knuth's * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime * secondary probe. Here, the modular division first probe is gives way * to a faster exclusive-or manipulation. Also do block compression with * an adaptive reset, where the code table is cleared when the compression * ratio decreases, but after the table fills. The variable-length output * codes are re-sized at this point, and a special CLEAR code is generated * for the decompressor. */ init_cm(f,t) /* initialize for compression */ FILE *f; /* file we will be compressing */ FILE *t; /* where we will put it */ { offset = 0; bytes_out = 1; clear_flg = 0; ratio = 0; in_count = 1; checkpoint = CHECK_GAP; maxcode = MAXCODE(n_bits = INIT_BITS); free_ent = FIRST; setmem(htab,HSIZE*sizeof(long),0xff); n_bits = INIT_BITS; /* set starting code size */ putc_pak(BITS,t); /* note our max code length */ firstcmp = 1; /* next byte will be first */ } putc_cm(c,t) /* compress a character */ unsigned char c; /* character to compress */ FILE *t; /* where to put it */ { static long fcode; static int hshift; int i; int disp; if(firstcmp) /* special case for first byte */ { ent = c; /* remember first byte */ hshift = 0; for(fcode=(long)HSIZE; fcode<65536L; fcode*=2L) hshift++; hshift = 8 - hshift; /* set hash code range bound */ firstcmp = 0; /* no longer first */ return; } in_count++; fcode =(long)(((long)c << BITS)+ent); i = (c< 0) goto probe; nomatch: putcode(ent,t); ent = c; if(free_ent < maxmaxcode) { codetab[i] = free_ent++; /* code -> hashtable */ htab[i] = fcode; } else if((long int)in_count >= checkpoint) cl_block(t); } long pred_cm(t) /* finish compressing a file */ FILE *t; /* where to put it */ { putcode(ent,t); /* put out the final code */ putcode(-1,t); /* tell output we are done */ return bytes_out; /* say how big it got */ } /* * Decompress a file. This routine adapts to the codes in the file * building the string table on-the-fly; requiring no table to be stored * in the compressed file. The tables used herein are shared with those of * the compress() routine. See the definitions above. */ decomp(f,t) /* decompress a file */ FILE *f; /* file to read codes from */ FILE *t; /* file to write text to */ { unsigned char *stackp; int finchar; int code, oldcode, incode; if((code=getc_unp(f))!=BITS) abort("File packed with %d bits, I can only handle %d",code,BITS); n_bits = INIT_BITS; /* set starting code size */ clear_flg = 0; /* * As above, initialize the first 256 entries in the table. */ maxcode = MAXCODE(n_bits=INIT_BITS); for(code = 255; code >= 0; code--) { prefix[code] = 0; suffix[code] = (unsigned char)code; } free_ent = FIRST; finchar = oldcode = getcode(f); if(oldcode == -1) /* EOF already? */ return; /* Get out of here */ putc_ncr((char)finchar,t); /* first code must be 8 bits=char */ stackp = stack; while((code = getcode(f))> -1) { if(code==CLEAR) { for(code = 255; code >= 0; code--) prefix[code] = 0; clear_flg = 1; free_ent = FIRST - 1; if((code=getcode(f))==-1)/* O, untimely death! */ break; } incode = code; /* * Special case for KwKwK string. */ if(code >= free_ent) { *stackp++ = finchar; code = oldcode; } /* * Generate output characters in reverse order */ while(code >= 256) { *stackp++ = suffix[code]; code = prefix[code]; } *stackp++ = finchar = suffix[code]; /* * And put them out in forward order */ do putc_ncr(*--stackp,t); while(stackp > stack); /* * Generate the new entry. */ if((code=free_ent) < maxmaxcode) { prefix[code] = (unsigned short)oldcode; suffix[code] = finchar; free_ent = code+1; } /* * Remember previous code. */ oldcode = incode; } } /************************************************************************* * Please note how much trouble it can be to maintain upwards * * compatibility. All that follows is for the sole purpose of unpacking * * files which were packed using an older method. * *************************************************************************/ /* The h() pointer points to the routine to use for calculating a hash value. It is set in the init routines to point to either of oldh() or newh(). oldh() calculates a hash value by taking the middle twelve bits of the square of the key. newh() works somewhat differently, and was tried because it makes ARC about 23% faster. This approach was abandoned because dynamic Lempel-Zev (above) works as well, and packs smaller also. However, inadvertent release of a developmental copy forces us to leave this in. */ static unsigned (*h)(); /* pointer to hash function */ static unsigned oldh(pred,foll) /* old hash function */ unsigned int pred; /* code for preceeding string */ unsigned char foll; /* value of following char */ { long local; /* local hash value */ local = (pred + foll) | 0x0800; /* create the hash key */ local *= local; /* square it */ return (local >> 6) & 0x0FFF; /* return the middle 12 bits */ } static unsigned newh(pred,foll) /* new hash function */ unsigned int pred; /* code for preceeding string */ unsigned char foll; /* value of following char */ { return ((pred+foll)*15073)&0xFFF; /* faster hash */ } /* The eolist() function is used to trace down a list of entries with duplicate keys until the last duplicate is found. */ static unsigned eolist(index) /* find last duplicate */ unsigned int index; { int temp; while(temp=string_tab[index].next) /* while more duplicates */ index = temp; return index; } /* The hash() routine is used to find a spot in the hash table for a new entry. It performs a "hash and linear probe" lookup, using h() to calculate the starting hash value and eolist() to perform the linear probe. This routine DOES NOT detect a table full condition. That MUST be checked for elsewhere. */ static unsigned hash(pred,foll) /* find spot in the string table */ unsigned int pred; /* code for preceeding string */ unsigned char foll; /* char following string */ { unsigned int local, tempnext; /* scratch storage */ struct entry *ep; /* allows faster table handling */ local = (*h)(pred,foll); /* get initial hash value */ if(!string_tab[local].used) /* if that spot is free */ return local; /* then that's all we need */ else /* else a collision has occured */ { local = eolist(local); /* move to last duplicate */ /* We must find an empty spot. We start looking 101 places down the table from the last duplicate. */ tempnext = (local+101) & 0x0FFF; ep = &string_tab[tempnext]; /* initialize pointer */ while(ep->used) /* while empty spot not found */ { if(++tempnext==TABSIZE) /* if we are at the end */ { tempnext = 0; /* wrap to beginning of table*/ ep = string_tab; } else ++ep; /* point to next element in table */ } /* local still has the pointer to the last duplicate, while tempnext has the pointer to the spot we found. We use this to maintain the chain of pointers to duplicates. */ string_tab[local].next = tempnext; return tempnext; } } /* The unhash() function is used to search the hash table for a given key. Like hash(), it performs a hash and linear probe search. It returns either the number of the entry (if found) or NOT_FND (if not found). */ static unsigned unhash(pred,foll) /* search string table for a key */ unsigned int pred; /* code of preceeding string */ unsigned char foll; /* character following string */ { unsigned int local, offset; /* scratch storage */ struct entry *ep; /* this speeds up access */ local = (*h)(pred,foll); /* initial hash */ while(1) { ep = &string_tab[local]; /* speed up table access */ if((ep->predecessor==pred) && (ep->follower==foll)) return local; /* we have a match */ if(!ep->next) /* if no more duplicates */ return NOT_FND; /* then key is not listed */ local = ep->next; /* move on to next duplicate */ } } /* The init_tab() routine is used to initialize our hash table. You realize, of course, that "initialize" is a complete misnomer. */ static init_tab() /* set ground state in hash table */ { unsigned int i; /* table index */ setmem((char *)string_tab,sizeof(string_tab),0); for(i=0; i<256; i++) /* list all single byte strings */ upd_tab(NO_PRED,i); inbuf = EMPTY; /* nothing is in our buffer */ } /* The upd_tab routine is used to add a new entry to the string table. As previously stated, no checks are made to ensure that the table has any room. This must be done elsewhere. */ upd_tab(pred,foll) /* add an entry to the table */ unsigned int pred; /* code for preceeding string */ unsigned int foll; /* character which follows string */ { struct entry *ep; /* pointer to current entry */ /* calculate offset just once */ ep = &string_tab[hash(pred,foll)]; ep->used = TRUE; /* this spot is now in use */ ep->next = 0; /* no duplicates after this yet */ ep->predecessor = pred; /* note code of preceeding string */ ep->follower = foll; /* note char after string */ } /* This algorithm encoded a file into twelve bit strings (three nybbles). The gocode() routine is used to read these strings a byte (or two) at a time. */ static gocode(fd) /* read in a twelve bit code */ FILE *fd; /* file to get code from */ { unsigned int localbuf, returnval; if(inbuf==EMPTY) /* if on a code boundary */ { if((localbuf=getc_unp(fd))==EOF) /* get start of next code */ return EOF; /* pass back end of file status */ localbuf &= 0xFF; /* mask down to true byte value */ if((inbuf=getc_unp(fd))==EOF) /* get end of code, start of next */ return EOF; /* this should never happen */ inbuf &= 0xFF; /* mask down to true byte value */ returnval = ((localbuf<<4)&0xFF0) + ((inbuf>>4)&0x00F); inbuf &= 0x000F; /* leave partial code pending */ } else /* buffer contains first nybble */ { if((localbuf=getc_unp(fd))==EOF) return EOF; localbuf &= 0xFF; returnval = localbuf + ((inbuf<<8)&0xF00); inbuf = EMPTY; /* note no hanging nybbles */ } return returnval; /* pass back assembled code */ } static push(c) /* push char onto stack */ int c; /* character to push */ { stack[sp] = ((char) c); /* coerce integer into a char */ if(++sp >= TABSIZE) abort("Stack overflow\n"); } static int pop() /* pop character from stack */ { if(sp>0) return ((int) stack[--sp]); /* leave ptr at next empty slot */ else return EMPTY; } /***** LEMPEL-ZEV DECOMPRESSION *****/ static int code_count; /* needed to detect table full */ static unsigned code; /* where we are so far */ static int firstc; /* true only on first character */ init_ucr(new) /* get set for uncrunching */ int new; /* true to use new hash function */ { if(new) /* set proper hash function */ h = newh; else h = oldh; sp = 0; /* clear out the stack */ init_tab(); /* set up atomic code definitions */ code_count = TABSIZE - 256; /* note space left in table */ firstc = 1; /* true only on first code */ } int getc_ucr(f) /* get next uncrunched byte */ FILE *f; /* file containing crunched data */ { unsigned int c; /* a character of input */ int code, newcode; static int oldcode, finchar; struct entry *ep; /* allows faster table handling */ if(firstc) /* first code is always known */ { firstc = FALSE; /* but next will not be first */ oldcode = gocode(f); return finchar = string_tab[oldcode].follower; } if(!sp) /* if stack is empty */ { if((code=newcode=gocode(f))==EOF) return EOF; ep = &string_tab[code]; /* initialize pointer */ if(!ep->used) /* if code isn't known */ { code = oldcode; ep = &string_tab[code]; /* re-initialize pointer */ push(finchar); } while(ep->predecessor!=NO_PRED) { push(ep->follower); /* decode string backwards */ code = ep->predecessor; ep = &string_tab[code]; } push(finchar=ep->follower); /* save first character also */ /* The above loop will terminate, one way or another, with string_tab[code].follower equal to the first character in the string. */ if(code_count) /* if room left in string table */ { upd_tab(oldcode,finchar); --code_count; } oldcode = newcode; } return pop(); /* return saved character */ }